Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(18): 6867-6873, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725510

RESUMEN

Dearomatization of indoles through a charge transfer complex constitutes a powerful tool for synthesizing three-dimensional constrained structures. However, the implementation of this strategy for the dearomatization of tryptamine-derived isocyanides to generate spirocyclic scaffolds remains underdeveloped. In this work, we have demonstrated the ability of tryptamine-derived isocyanides to form aggregates at higher concentration, enabling a single electron transfer step to generate carbon-based-radical intermediates. Optical, HRMS and computational studies have elucidated key aspects associated with the photophysical properties of tryptamine-derived isocyanides. The developed protocol is operationally simple, robust and demonstrates a novel approach to generate conformationally constrained spirocyclic scaffolds, compounds with high demand in various fields, including drug discovery.

2.
J Mater Chem C Mater ; 12(2): 655-663, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38188498

RESUMEN

All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.

3.
Chemphyschem ; 24(21): e202300303, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37544892

RESUMEN

In recent years, there has been an impressively fast technological progress in the development of highly efficient lead halide perovskite solar cells. Nonetheless, the stability of perovskite films and associated solar cells remains a source of uncertainty and necessitates sophisticated characterization techniques. Here, we report low- to mid-frequency resonant Raman spectra of formamidinium-based lead mixed-halide perovskites. The assignment of the different Raman lines in the measured spectra is assisted by DFT simulations of the Raman spectra of suitable periodic model systems. An important result of this work is that both experiment and theory point to an increase of the stability of the perovskite structure with increasing chloride doping concentration. In the Raman spectra, this is reflected by the appearance of new lines due to the formation of hydrogen bonds. Thus, higher chloride doping results in less torsional motion and lower asymmetric bending contributing to higher stability. This study yields a solid basis for the interpretation of the Raman spectra of formamidinium-based mixed-halide perovskites, furthering the understanding of the properties of these materials, which is essential for their full exploitation in solar cells.

4.
Chem Mater ; 35(10): 3998-4006, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251100

RESUMEN

Halide perovskite nanocrystals (PNCs) exhibit growing attention in optoelectronics due to their fascinating color purity and improved intrinsic properties. However, structural defects emerging in PNCs progressively hinder the radiative recombination and carrier transfer dynamics, limiting the performance of light-emitting devices. In this work, we explored the introduction of guanidinium (GA+) during the synthesis of high-quality Cs1-xGAxPbI3 PNCs as a promising approach for the fabrication of efficient bright-red light-emitting diodes (R-LEDs). The substitution of Cs by 10 mol % GA allows the preparation of mixed-cation PNCs with PLQY up to 100% and long-term stability for 180 days, stored under air atmosphere and refrigerated condition (4 °C). Here, GA+ cations fill/replace Cs+ positions into the PNCs, compensating intrinsic defect sites and suppressing the nonradiative recombination pathway. LEDs fabricated with this optimum material show an external quantum efficiency (EQE) near to 19%, at an operational voltage of 5 V (50-100 cd/m2) and an operational half-time (t50) increased 67% respect CsPbI3 R-LEDs. Our findings show the possibility to compensate the deficiency through A-site cation addition during the material synthesis, obtaining less defective PNCs for efficient and stable optoelectronic devices.

5.
J Phys Chem Lett ; 14(4): 1066-1072, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36696665

RESUMEN

Over the past two decades, intensive research efforts have been devoted to suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for the application of photovoltaics and light emitting devices (LEDs). Here, we have explored dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body interactions that are manifested under high excitation flux density in both NCs using ultrafast spectroscopic pump-probe measurements. We demonstrate that the Auger recombination rate due to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate excitation density, the majority of carriers recombine through biexcitonic recombination. However, at high excitation density (>1018 cm-3) a higher number of many-body Auger process dominates over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics and LEDs.

6.
Phys Chem Chem Phys ; 23(6): 3983-3992, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33554234

RESUMEN

Quasi two-dimensional perovskites have attracted great attention for applications in light-emitting devices and photovoltaics due to their robustness and tunable highly efficient photoluminescence (PL). However, the mechanism of intrinsic PL in these materials is still not fully understood. In this work, we have analysed the nature of the different emissive states and the impact of temperature on the emissions in quasi two-dimensional methyl ammonium lead bromide perovskite (q-MPB) and cesium lead bromide perovskite (q-CPB). We have used spatially resolved phase-modulated two-photon photoluminescence (2PPL) and temperature-dependent 2PPL to characterize the emissions. Our results show that at room temperature, the PL from q-MPB is due to the recombination of excitons and free carriers while the PL from q-CPB is due to the recombination of excitons only. Temperature-dependent measurements show that in both materials the linewidth broadening is due to the interactions between the excitons and optical phonons at high temperatures. Comparing the characteristics of the emissions in the two systems, we conclude that q-CPB is better suited for light emitting devices. With a further optimization to reduce the impact on the environment, q-CPB-based LEDs could perform as well as OLEDs.

7.
Nanoscale ; 13(5): 2972-2981, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33508050

RESUMEN

Covalent functionalization is one of the most efficient ways to tune the properties of layered materials in a highly controlled manner. However, molecular chemisorption on semiconducting transition metal dichalcogenides remains a delicate task due to the inertness of their surface. Here we perform covalent modification of bulk and single layer molybdenum disulfide (MoS2) using chemical activation of diazonium salts. A high level of control over the grafting density and yield on MoS2 basal plane can be achieved by this approach. Using scanning probe microscopies and X-ray photoelectron spectroscopy we prove the covalent functionalization of MoS2.

8.
ChemSusChem ; 14(1): 306-312, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33210784

RESUMEN

Visible light-driven photocatalytic reduction of protons to H2 is considered a promising way of solar-to-chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2 ) evolution process. Here, for the first time, the hole-transfer dynamics from Pt-loaded sol-gel-prepared graphitic carbon nitride (Pt-sg-CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge-transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time-resolved photoluminescence and in situ electron paramagnetic resonance studies.

9.
Nanoscale Horiz ; 5(4): 696-704, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32226965

RESUMEN

Unveiling the transparency and flexibility in perovskite-based photodetectors with superior photoresponse and environmental stability remains an open challenge. Here we report on guanidinium incorporated metal halide perovskite (MA1-xGuaxPbI3, x = 0 to 0.65) random percolative microstructure (RPM) fabrication using an ultra-fast spray coating technique. Remarkably, RPMs over a large area of 5 × 5 cm2 on flexible substrates with a transparency of ∼50% can be achieved with enriched environmental stability. Transparent photodetectors based on MA1-xGuaxPbI3 (x = 0.12) RPMs manifest excellent performance with a responsivity of 187 A W-1, a detectivity of 2.23 × 1012 Jones and an external quantum efficiency of 44 115%. Additionally, the photodetectors exhibited superior mechanical flexibility under a wide range of bending angles and large number of binding cycles. Integrating features including transparency, high performance, stability, flexibility and scalability within a photodetector is unmatched and holds potential for novel applications in transparent and wearable optoelectronic devices.

10.
J Phys Chem Lett ; 11(4): 1239-1246, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31977225

RESUMEN

Organic lead halide perovskite (OLHP) nanocrystals (NCs) have paved the way to advanced optoelectronic devices through their extraordinary electrical and optical properties. However, understanding of the light-induced complex dynamic phenomena in OLHP NCs remains a subject of debate. Here we used wide field microscopy and time-resolved spectroscopy to correlate the local changes in photophysics and the dynamical behavior of photocarriers. We demonstrate that light-induced brightening of the photoluminescence from the formamidinium lead bromide NC films is related to the film preparation condition and reduction of trap density. The density of trap states is reduced via halide ion migration from interstitial position. Our femtosecond transient absorption study identifies transient Stark effect due to the generation of hot carriers. Because of slow carrier trapping, Auger recombination through many-body carrier-carrier interactions dominates over trion recombination. This work presents unprecedented insights into the light-driven processes enabling better device design in the future.

11.
Nanophotonics ; 10(8): 2145-2156, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36406045

RESUMEN

Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm-2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.

12.
J Phys Chem Lett ; 10(8): 1805-1812, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929427

RESUMEN

All inorganic mixed-halide perovskite, CsPb(Br xI1- x)3 (0 ≤ x ≤ 1), nanocrystals possess tunable photoluminescence with high quantum yield in the visible window. However, the photoluminescence degrades rapidly with postsynthetic aging due to the spontaneous ion separation and phase instability. Here we show that the postsynthetic aging of CsPb(Br xI1- x)3 nanocubes spontaneously forms highly uniform single-crystalline nanowires with a diameter of 9 ± 0.5 nm and length of up to several micrometers. The nanowires show bright photoluminescence with an absolute photoluminescence quantum yield of 41%. Rietveld refinement identifies the stable orthorhombic phase of the nanowires, implying a phase transition from the cubic crystallographic phase of the nanocubes during the morphology evolution. Transient absorption spectroscopy reveals a faster excited-state decay dynamic with a large exciton delocalization length in 1D nanowires. Our findings elucidate the insights into the postsynthesis morphology evolution of mixed-halide perovskite nanocrystals leading to luminescent nanowires with excellent crystal phase stability for potential optoelectronic applications.

13.
ACS Appl Mater Interfaces ; 11(12): 11749-11754, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30807098

RESUMEN

A differentiator is an electronic component used to accomplish mathematical operations of calculus functions of differentiation for shaping different waveforms. Differentiators are used in numerous areas of electronics, including electronic analog computers, wave-shaping circuits, and frequency modulators. Conventional differentiators are fabricated using active operational amplifiers or using passive resistor-capacitor combinations. Here, we report that a single Cu2S-CdS heterostructure acts as a differentiator for performing numerical functions of input waveform conversion into different shapes. When a rectangular wave signal is applied through the tip of a conductive atomic force microscope, a spikelike wave signal is obtained from the Cu2S-CdS heterostructure. The Cu2S-CdS differentiator is able to convert a sine wave signal into a cosine wave signal and a triangular wave signal into a square wave signal similar to the classical differentiators. The finding of a nanoscale differentiator at extremely small length scales may have profound applications in different domains of electronics.

14.
J Phys Chem Lett ; 9(15): 4245-4250, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29996055

RESUMEN

Organometal halide perovskites in the form of nanocrystals (NCs) have attracted enormous attention due to their unique optoelectronic and photoluminescence (PL) properties. Here, we examine the phase composition and the temperature dependence of emission line width broadening in formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) for light-emitting applications and identify different charge-carrier scattering mechanisms. Our results show most of the emission is from the orthorhombic phase. The PL line width broadening at high temperature is dominated by the Fröhlich interaction between the free charge carriers and the optical phonons. At low temperatures, the peak of the PL spectrum exhibits a continuous red shift indicating an increase of excitons contribution at lower temperatures, and concurrently the line width also narrows down due to the inhibition of the optical phonons. From the temperature-dependent measurements, the coupling strength of both the charge phonon interaction and the exciton phonon interaction have been determined. The obtained results indicate that the charge phonon coupling strengths are higher compared to the exciton phonon coupling.

15.
Nanoscale ; 7(19): 9062-74, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25921601

RESUMEN

Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles , Cobre/química , Glucosa/análisis , Peróxido de Hidrógeno/análisis , Nanopartículas/química , Bencidinas/química , Materiales Biomiméticos/metabolismo , Catálisis , Colorimetría , Cinética , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...