Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Neurol ; 14: 1140722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006486

RESUMEN

The European Commission's Innovative Medicines Initiative (IMI) has funded many projects focusing on neurodegenerative disorders (ND) that aimed to improve the diagnosis, prevention, treatment and understanding of NDs. To facilitate collaboration across this project portfolio, the IMI funded the "NEURONET" project between March 2019 and August 2022 with the aim of connecting these projects and promoting synergies, enhancing the visibility of their findings, understanding the impact of the IMI funding and identifying research gaps that warrant more/new funding. The IMI ND portfolio currently includes 20 projects consisting of 270 partner organizations across 25 countries. The NEURONET project conducted an impact analysis to assess the scientific and socio-economic impact of the IMI ND portfolio. This was to better understand the perceived areas of impact from those directly involved in the projects. The impact analysis was conducted in two stages: an initial stage developed the scope of the project, defined the impact indicators and measures to be used. A second stage designed and administered the survey amongst partners from European Federation of Pharmaceutical Industries and Associations (EFPIA) organizations and other partners (hereafter, referred to as "non-EFPIA" organizations). Responses were analyzed according to areas of impact: organizational, economic, capacity building, collaborations and networking, individual, scientific, policy, patient, societal and public health impact. Involvement in the IMI ND projects led to organizational impact, and increased networking, collaboration and partnerships. The key perceived disadvantage to project participation was the administrative burden. These results were true for both EFPIA and non-EFPIA respondents. The impact for individual, policy, patients and public health was less clear with people reporting both high and low impact. Overall, there was broad alignment between EFPIA and non-EFPIA participants' responses apart from for awareness of project assets, as part of scientific impact, which appeared to be slightly higher among non-EFPIA respondents. These results identified clear areas of impact and those that require improvement. Areas to focus on include promoting asset awareness, establishing the impact of the IMI ND projects on research and development, ensuring meaningful patient involvement in these public-private partnership projects and reducing the administrative burden associated with participation in them.

2.
Acta Neuropathol Commun ; 11(1): 39, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899414

RESUMEN

Despite ongoing debate, the amyloid ß-protein (Aß) remains the prime therapeutic target for the treatment of Alzheimer's disease (AD). However, rational drug design has been hampered by a lack of knowledge about neuroactive Aß. To help address this deficit, we developed live-cell imaging of iPSC-derived human neurons (iNs) to study the effects of the most disease relevant form of Aß-oligomeric assemblies (oAß) extracted from AD brain. Of ten brains studied, extracts from nine caused neuritotoxicity, and in eight cases this was abrogated by Aß immunodepletion. Here we show that activity in this bioassay agrees relatively well with disruption of hippocampal long-term potentiation, a correlate of learning and memory, and that measurement of neurotoxic oAß can be obscured by more abundant non-toxic forms of Aß. These findings indicate that the development of novel Aß targeting therapeutics may benefit from unbiased activity-based discovery. To test this principle, we directly compared 5 clinical antibodies (aducanumab, bapineuzumab,  BAN2401, gantenerumab, and SAR228810) together with an in-house aggregate-preferring antibody (1C22) and established relative EC50s in protecting human neurons from human Aß. The results yielded objective numerical data on the potency of each antibody in neutralizing human oAß neuritotoxicity. Their relative efficacies in this morphological assay were paralleled by their functional ability to rescue oAß-induced inhibition of hippocampal synaptic plasticity. This novel paradigm provides an unbiased, all-human system for selecting candidate antibodies for advancement to human immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Inmunoterapia , Neuronas/metabolismo
3.
Glia ; 71(4): 974-990, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36480007

RESUMEN

Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.


Asunto(s)
Enfermedad de Alzheimer , Sinaptosomas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Cistatinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Neuronas/patología , Fagocitosis/genética , Fosfatidilserinas/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/patología
4.
Front Neurol ; 13: 994301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408524

RESUMEN

The IMI public-private partnership between the European Commission and the European Federation of Pharmaceutical Industries and Associations (EFPIA) was launched in 2008 with an initial budget of €2 billion. Aiming to accelerate the development of innovative medicines for areas of unmet clinical need, the IMI has committed over €380 million to projects on neurodegenerative disorders (NDD), catalyzing public-private collaborations at scale and at all stages of the R&D pipeline. Because of this vast investment, research on neurodegenerative diseases has made enormous strides in recent decades. The challenge for the future however remains to utilize this newly found knowledge and generated assets to develop better tools and novel therapeutic strategies. Here, we report the results of an integrated programme analysis of the IMI NDD portfolio, performed by the Neuronet Coordination and Support Action. Neuronet was launched by the IMI in 2019 to boost synergies and collaboration between projects in the IMI NDD portfolio, to increase the impact and visibility of research, and to facilitate interactions with related initiatives worldwide. Our analysis assessed the characteristics, structure and assets of the project portfolio and identifies lessons from projects spanning preclinical research to applied clinical studies and beyond. Evaluation of project parameters and network analyses of project partners revealed a complex web of 236 partnering organizations, with EFPIA partners often acting as connecting nodes across projects, and with a great diversity of academic institutions. Organizations in the UK, Germany, France and the Netherlands were highly represented in the portfolio, which has a strong focus on clinical research in Alzheimer's and Parkinson's disease in particular. Based on surveys and unstructured interviews with NDD research leaders, we identified actions to enhance collaboration between project partners, by improving the structure and definition of in-kind contributions; reducing administrative burdens; and enhancing the exploitation of outcomes from research investments by EU taxpayers and EFPIA. These recommendations could help increase the efficiency and impact of future public-private partnerships on neurodegeneration.

5.
Glia ; 70(12): 2290-2308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35912412

RESUMEN

The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , Ligandos , Microglía/metabolismo , Células Mieloides/metabolismo , Fosfatidilserinas/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo
6.
Brain ; 145(7): 2528-2540, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35084489

RESUMEN

Aqueously soluble oligomers of amyloid-ß peptide may be the principal neurotoxic forms of amyloid-ß in Alzheimer's disease, initiating downstream events that include tau hyperphosphorylation, neuritic/synaptic injury, microgliosis and neuron loss. Synthetic oligomeric amyloid-ß has been studied extensively, but little is known about the biochemistry of natural oligomeric amyloid-ß in human brain, even though it is more potent than simple synthetic peptides and comprises truncated and modified amyloid-ß monomers. We hypothesized that monoclonal antibodies specific to neurotoxic oligomeric amyloid-ß could be used to isolate it for further study. Here we report a unique human monoclonal antibody (B24) raised against synthetic oligomeric amyloid-ß that potently prevents Alzheimer's disease brain oligomeric amyloid-ß-induced impairment of hippocampal long-term potentiation. B24 binds natural and synthetic oligomeric amyloid-ß and a subset of amyloid plaques, but only in the presence of Ca2+. The amyloid-ß N terminus is required for B24 binding. Hydroxyapatite chromatography revealed that natural oligomeric amyloid-ß is highly avid for Ca2+. We took advantage of the reversible Ca2+-dependence of B24 binding to perform non-denaturing immunoaffinity isolation of oligomeric amyloid-ß from Alzheimer's disease brain-soluble extracts. Unexpectedly, the immunopurified material contained amyloid fibrils visualized by electron microscopy and amenable to further structural characterization. B24-purified human oligomeric amyloid-ß inhibited mouse hippocampal long-term potentiation. These findings identify a calcium-dependent method for purifying bioactive brain oligomeric amyloid-ß, at least some of which appears fibrillar.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Humanos , Ratones , Placa Amiloide/metabolismo
7.
J Pharmacol Exp Ther ; 378(3): 262-275, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34531308

RESUMEN

In Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2α (eIF2α). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid-ß oligomers (AßOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacological activity in AD experimental models. In ApoE4 human replacement male mice, 1-week oral treatment with SAR439883 rescued short-term memory impairment in the spatial object recognition test and dose-dependently reduced learning and memory deficits in the Barnes maze test. Moreover, in AßO-injected male mice, a 2-week administration of SAR439883 in diet dose-dependently ameliorated the AßO-induced cognitive impairment in both Y-maze and Morris Water Maze, prevented loss of synaptic proteins, and reduced levels of the proinflammatory cytokine interleukin-1ß In both mouse models, these effects were associated with a dose-dependent inhibition of brain PKR activity as measured by both PKR occupancy and partial lowering of peIF2α levels. Our results provide evidence that selective pharmacological inhibition of PKR by a small selective molecule can rescue memory deficits and prevent neurodegeneration in animal models of AD-like pathology, suggesting that inhibition of PKR is a potential therapeutic approach for AD. SIGNIFICANCE STATEMENT: This study reports the identification of a new small molecule potent and selective protein kinase R (PKR) inhibitor that can prevent cognitive deficits and neurodegeneration in Alzheimer disease (AD) experimental models, including a mouse model expressing the most prevalent AD genetic risk factor ApoE4. With high potency and selectivity, this PKR inhibitor represents a unique tool for investigating the physiological role of PKR and a starting point for developing new drug candidates for AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Aprendizaje por Laberinto , Trastornos de la Memoria
8.
Sci Rep ; 11(1): 13462, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188106

RESUMEN

CD33/Sialic acid-binding Ig-like lectin 3 (SIGLEC3) is an innate immune receptor expressed on myeloid cells and mediates inhibitory signaling via tyrosine phosphatases. Variants of CD33 are associated with Alzheimer's disease (AD) suggesting that modulation of CD33 signaling might be beneficial in AD. Hence, there is an urgent need for reliable cellular CD33 reporter systems. Therefore, we generated a CD33 reporter cell line expressing a fusion protein consisting of the extracellular domain of either human full-length CD33 (CD33M) or the AD-protective variant CD33ΔE2 (D2-CD33/CD33m) linked to TYRO protein tyrosine kinase binding protein (TYROBP/DAP12) to investigate possible ligands and antibodies for modulation of CD33 signaling. Application of the CD33-specific antibodies P67.6 and 1c7/1 to the CD33M-DAP12 reporter cells resulted in increased phosphorylation of the kinase SYK, which is downstream of DAP12. CD33M-DAP12 but not CD33ΔE2-DAP12 expressing reporter cells showed increased intracellular calcium levels upon treatment with CD33 antibody P67.6 and partially for 1c7/1. Furthermore, stimulation of human induced pluripotent stem cell-derived microglia with the CD33 antibodies P67.6 or 1c7/1 directly counteracted the triggering receptor expressed on myeloid cells 2 (TREM2)-induced phosphorylation of SYK and decreased the phagocytic uptake of bacterial particles. Thus, the developed reporter system confirmed CD33 pathway activation by CD33 antibody clones P67.6 and 1c7/1. In addition, data showed that phosphorylation of SYK by TREM2 activation and phagocytosis of bacterial particles can be directly antagonized by CD33 signaling.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Anticuerpos/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Microglía/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Enfermedad de Alzheimer/genética , Línea Celular , Humanos , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética
9.
Mol Ther Methods Clin Dev ; 19: 58-77, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33005703

RESUMEN

Most antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aß) peptide were constructed and shown to display higher brain penetration than the parent anti-Aß antibody. Additional structure-based mutations on the TfR paratopes further increased brain exposure, with maximal enhancement up to 13-fold in wild-type mice and an additional 4-5-fold in transgenic (Tg) mice harboring amyloid plaques, the main target of our amyloid antibody. Parenchymal target engagement of extracellular amyloid plaques was demonstrated using in vivo and ex vivo fluorescence imaging as well as histological methods. The best candidates were selected for a chronic study in an amyloid precursor protein (APP) Tg mouse model showing efficacy at reducing brain amyloid load at a lower dose than the corresponding monospecific antibody. TBTIs represent a promising format for enhancing IgG brain penetration using a symmetrical construct and keeping bivalency of the payload antibody.

10.
PLoS One ; 14(12): e0226245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31887144

RESUMEN

Antibody therapies for Alzheimer's Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies' own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-ß have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive ß-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aß scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/terapia , Sistema Nervioso Central/metabolismo , Vectores Genéticos/administración & dosificación , Fragmentos Fc de Inmunoglobulinas/genética , Anticuerpos de Cadena Única/genética , Enfermedad de Alzheimer/genética , Animales , Barrera Hematoencefálica , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Terapia Genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Dominios Proteicos , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo
11.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31065832

RESUMEN

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trastornos de la Memoria/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tauopatías/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Memoria Espacial/fisiología , Tauopatías/genética , Tauopatías/patología , Proteínas Supresoras de Tumor/genética
12.
Mol Neurobiol ; 56(10): 7234-7245, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31004319

RESUMEN

The low-density lipoprotein receptor-related protein-1 (LRP1) has a dual role in the metabolism of the amyloid precursor protein (APP). In cellular models, LRP1 enhances amyloid-ß (Aß) generation via APP internalization and thus its amyloidogenic processing. However, conditional knock-out studies in mice define LRP1 as an important mediator for the clearance of extracellular Aß from brain via cellular degradation or transcytosis across the blood-brain barrier (BBB). In order to analyze the net effect of LRP1 on production and clearance of Aß in vivo, we crossed mice with impaired LRP1 function with a mouse model of Alzheimer's disease (AD). Analysis of Aß metabolism showed that, despite reduced Aß clearance due to LRP1 inactivation in vivo, less Aß was found in cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Further analysis of APP metabolism revealed that impairment of LRP1 in vivo shifted APP processing from the Aß-generating amyloidogenic cleavage by beta-secretase to the non-amyloidogenic processing by alpha-secretase as shown by a decrease in extracellular Aß and an increase of soluble APP-α (sAPP-α). This shift in APP processing resulted in overall lower Aß levels and a reduction in plaque burden. Here, we present for the first time clear in vivo evidence that global impairment of LRP1's endocytosis function favors non-amyloidogenic processing of APP due to its reduced internalization and subsequently, reduced amyloidogenic processing. By inactivation of LRP1, the inhibitory effect on Aß generation overrules the simultaneous impaired Aß clearance, resulting in less extracellular Aß and reduced plaque deposition in a mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Ratones , Mutación/genética , Placa Amiloide/metabolismo
13.
Alzheimers Res Ther ; 10(1): 117, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486882

RESUMEN

BACKGROUND: Anti-amyloid ß (Aß) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aß peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aß immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab. These two factors might have contributed to the limited efficacy demonstrated so far in clinical studies. METHODS: To address these limitations, we have engineered SAR228810, a humanized monoclonal antibody (mAb) with limited Fc effector functions that binds specifically to soluble protofibrillar and fibrillar forms of Aß peptide and we tested it together with its murine precursor SAR255952 in vitro and in vivo. RESULTS: Unlike gantenerumab and BAN2401, SAR228810 and SAR255952 do not bind to Aß monomers, low molecular weight Aß oligomers or, in human brain sections, to Aß diffuse deposits which are not specific of AD pathology. Both antibodies prevent Aß42 oligomer neurotoxicity in primary neuronal cultures. In vivo, SAR255952, a mouse aglycosylated IgG1, dose-dependently prevented brain amyloid plaque formation and plaque-related inflammation with a minimal active dose of 3 mg/kg/week by the intraperitoneal route. No increase in plasma Aß levels was observed with SAR255952 treatment, in line with its lack of affinity for monomeric Aß. The effects of SAR255952 translated into synaptic functional improvement in ex-vivo hippocampal slices. Brain penetration and decoration of cerebral amyloid plaques was documented in live animals and postmortem. SAR255952 (up to 50 mg/kg/week intravenously) did not increase brain microhemorrhages and/or microscopic changes in meningeal and cerebral arteries in old APPSL mice while 3D6, the murine version of bapineuzumab, did. In immunotolerized mice, the clinical candidate SAR228810 demonstrated the same level of efficacy as the murine SAR255952. CONCLUSION: Based on the improved efficacy/safety profile in non-clinical models of SAR228810, a first-in-man single and multiple dose administration clinical study has been initiated in AD patients.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Encéfalo/inmunología , Inmunoterapia/métodos , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/efectos adversos , Encéfalo/metabolismo , Potenciales Postsinápticos Excitadores/inmunología , Femenino , Hipocampo/inmunología , Hipocampo/fisiopatología , Humanos , Inmunoterapia/efectos adversos , Masculino , Ratones Endogámicos C57BL , Imagen Óptica , Cultivo Primario de Células , Factores de Riesgo
14.
Glia ; 66(3): 492-504, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29134678

RESUMEN

Chronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137). Immune checkpoint inhibition was therefore suggested as potential treatment for neurodegenerative disorders when activation of the immune system is appropriate. Because a xenogeneic rat antibody (mAb) was used in the study, whether the effect was specific to PD1 target engagement was uncertain. In the present study we examined whether PD1 immunotherapy can lower amyloid-ß pathology in a range of different amyloid transgenic models performed at three pharmaceutical companies with the exact same anti-PD1 isotype and two mouse chimeric variants. Although PD1 immunotherapy stimulated systemic activation of the peripheral immune system, monocyte-derived macrophage infiltration into the brain was not detected, and progression of brain amyloid pathology was not altered. Similar negative results of the effect of PD1 immunotherapy on amyloid brain pathology were obtained in two additional models in two separate institutions. These results show that inhibition of PD1 checkpoint signaling by itself is not sufficient to reduce amyloid pathology and that additional factors might have contributed to previously published results (Baruch et al., (): Nature Medicine, 22:135-137). Until such factors are elucidated, animal model data do not support further evaluation of PD1 checkpoint inhibition as a therapeutic modality for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Anticuerpos/administración & dosificación , Encéfalo/inmunología , Inmunoterapia , Receptor de Muerte Celular Programada 1/inmunología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Anticuerpos/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Interferón gamma/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética , Presenilina-1/metabolismo , ARN Mensajero/metabolismo , Distribución Aleatoria , Bazo/inmunología
15.
Neurobiol Dis ; 104: 73-84, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28392472

RESUMEN

Accumulation of neurofilaments (NFs), the major constituents of the neuronal cytoskeleton, is a distinctive feature of neurological diseases and several studies have shown that soluble NFs can be detected in the cerebrospinal fluid (CSF) of patients with neurological diseases, such as multiple sclerosis and frontotemporal dementia. Here we have used an inducible transgenic mouse model of neurodegeneration, CamKII-TetOp25 mice, to evaluate whether NF-L levels in CSF or blood can be used as a biochemical biomarker of neurodegeneration. Induction of p25 transgene brain expression led to increase in CSF and serum NF-L levels that correlated with ongoing neurodegeneration. Switching off p25 prevented further increases in both CSF and serum NF-L levels and concomitantly stopped the progression of neurodegeneration. The levels of CSF NF-L detected in p25 mice are about 4-fold higher than the CSF levels detected in patients with chronic neurodegenerative diseases, such as symptomatic FTD (bvFTD). In addition, our data indicate that the NF-L detected in CSF is most likely a cleaved form of NF-L. These results suggest that CSF and serum NF-L are of interest to be further explored as potential translational dynamic biomarkers of neurodegeneration or as pharmacodynamics biomarkers at least in preclinical animal studies.


Asunto(s)
Encéfalo/patología , Enfermedades Neurodegenerativas , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Neuronas/patología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Fluoresceínas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Factores de Empalme de ARN/metabolismo
16.
Front Aging Neurosci ; 8: 55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047372

RESUMEN

Extracellular deposition of ß amyloid plaques is an early event associated to Alzheimer's disease. Here, we have used in vivo gadolinium-stained high resolution (29(∗)29(∗)117 µm(3)) magnetic resonance imaging (MRI) to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952) directed against protofibrillar and fibrillary forms of Aß. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-months-old animals, but not in 5.5-months animals compared to mice treated with a control antibody (DM4). Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-months SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques.

17.
Sci Rep ; 6: 20958, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876372

RESUMEN

Histology is the gold standard to unveil microscopic brain structures and pathological alterations in humans and animal models of disease. However, due to tedious manual interventions, quantification of histopathological markers is classically performed on a few tissue sections, thus restricting measurements to limited portions of the brain. Recently developed 3D microscopic imaging techniques have allowed in-depth study of neuroanatomy. However, quantitative methods are still lacking for whole-brain analysis of cellular and pathological markers. Here, we propose a ready-to-use, automated, and scalable method to thoroughly quantify histopathological markers in 3D in rodent whole brains. It relies on block-face photography, serial histology and 3D-HAPi (Three Dimensional Histology Analysis Pipeline), an open source image analysis software. We illustrate our method in studies involving mouse models of Alzheimer's disease and show that it can be broadly applied to characterize animal models of brain diseases, to evaluate therapeutic interventions, to anatomically correlate cellular and pathological markers throughout the entire brain and to validate in vivo imaging techniques.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Programas Informáticos
18.
J Alzheimers Dis ; 50(2): 397-409, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26639971

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by early intraneuronal amyloid-ß (Aß) accumulation, extracellular deposition of Aß peptides, and intracellular hyperphosphorylated tau aggregates. These lesions cause dendritic and synaptic alterations and induce an inflammatory response in the diseased brain. Although the neuropathological characteristics of AD have been known for decades, the molecular mechanisms causing the disease are still under investigation. Studying gene expression changes in postmortem AD brain tissue can yield new insights into the molecular disease mechanisms. To that end, one can employ transgenic AD mouse models and the next-generation sequencing technology. In this study, a whole-brain transcriptome analysis was carried out using the well-characterized APP/PS1KI mouse model for AD. These mice display a robust phenotype reflected by working memory deficits at 6 months of age, a significant neuron loss in a variety of brain areas including the CA1 region of the hippocampus and a severe amyloid pathology. Based on deep sequencing, differentially expressed genes (DEGs) between 6-month-old WT or PS1KI and APP/PS1KI were identified and verified by qRT-PCR. Compared to WT mice, 250 DEGs were found in APP/PS1KI mice, while 186 DEGs could be found compared to PS1KI control mice. Most of the DEGs were upregulated in APP/PS1KI mice and belong to either inflammation-associated pathways or lysosomal activation, which is likely due to the robust intraneuronal accumulation of Aß in this mouse model. Our comprehensive brain transcriptome study further highlights APP/PS1KI mice as a valuable model for AD, covering molecular inflammatory and immune responses.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Transcriptoma , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Degeneración Nerviosa/patología , Presenilina-1/genética , Presenilina-1/metabolismo
19.
Alzheimers Dement (N Y) ; 2(4): 267-280, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29067314

RESUMEN

INTRODUCTION: Tau hyperphosphorylation and neurofibrillary tangles are histopathologic hallmarks of tauopathies. Histamine H3-receptor antagonists have been proposed to reduce tau hyperphosphorylation in preclinical models. METHODS: We evaluated the ability of SAR110894, a selective histamine H3-receptor antagonist, to inhibit tau pathology and prevent cognitive deficits in a tau transgenic mouse model (THY-Tau22). RESULTS: SAR110894 treatment for 6 months (but not 2 weeks) in THY-Tau22 mice decreased both tau hyperphosphorylation at pSer396-pSer404 (AD2 signal) in the hippocampus and the number of AT8 (pSer199/202-Thr205) positive cells in the cortex and decreased the formation of neurofibrillary tangles in the cortex, hippocampus, and amygdala. Macrophage inflammatory protein 1-alpha messenger RNA expression was decreased in the hippocampus. SAR110894 also prevented episodic memory deficits, and this effect was still detected after treatment washout. DISCUSSION: Long-term SAR110894 treatment could have potential disease modifying activity in neurodegenerative tauopathies.

20.
Front Aging Neurosci ; 6: 139, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25018730

RESUMEN

Abnormalities and impairments in axonal transport are suggested to strongly contribute to the pathological alterations underlying AD. The exact mechanisms leading to axonopathy are currently unclear, but it was recently suggested that APP expression itself triggers axonal degeneration. We used APP transgenic mice and crossed them on a hemi- or homozygous PS1 knock-in background (APP/PS1KI). Depending on the mutant PS1 dosage, we demonstrate a clear aggravation in both plaque-associated and plaque-distant axonal degeneration, despite of an unchanged APP expression level. Amyloid-ß (Aß) peptides were found to accumulate in axonal swellings as well as in axons and apical dendrites proximate to neurons accumulating intraneuronal Aß in their cell bodies. This suggests that Aß can be transported within neurites thereby contributing to axonal deficits. In addition, diffuse extracellular Aß deposits were observed in the close vicinity of axonal spheroids accumulating intracellular Aß, which might be indicative of a local Aß release from sites of axonal damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...