RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY: We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS: Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS: HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 µg/mL and 7.95 µg/mL) compared to acarbose (0.144 µg/mL). Most organic fractions exhibited â¼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION: This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.
Asunto(s)
Antiinfecciosos , Celastraceae , Maytenus , Humanos , Animales , Ratas , Peroxidación de Lípido , Acetilcolinesterasa , Butirilcolinesterasa , Antioxidantes/farmacología , Reacción de Maillard , Óxido de Magnesio , Espectrometría de Masas en Tándem , Fitoquímicos , alfa-Amilasas , Extractos Vegetales/farmacologíaRESUMEN
OBJECTIVE: This study aimed (i) to evaluate the antibacterial and cytotoxic activities of the crude extract and fractions obtained from Euclea natalensis A.D.C. roots against bacteria that cause periodontal disease and caries and (ii) to identify the isolated compounds. DESIGN: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the extract and fractions were determined by the microplate dilution assay. The cytotoxicity of the extract and fractions was evaluated by using the XTT colorimetric assay and normal human fibroblast cells (GM07492A, lung fibroblasts). The compounds present in the most promising fraction were determined by qualitative analysis through liquid chromatography coupled to mass spectrometry (HPLC-MS-ESI). RESULTS: The MIC results ranged from 25 to > 400 µg/mL for the extract and from 1.56 to > 400 µg/mL for the fractions. To evaluate cytotoxicity, the tested concentrations of the extract and fractions ranged from 19.5 to 2500 µg/mL; IC50 values between 625 and 1250 µg/mL were obtained. Analysis of the main bioactive fraction by HPLC-MS-ESI identified phenolic acids, coumarins, naphthoquinones, lignans, and fatty acids. CONCLUSIONS: The E. natalensis root extract and fractions displayed good antibacterial activity against periodontal pathogenic and cariogenic bacteria. The antibacterial activity may be due to compounds present in the extract and fractions, which also showed low cytotoxicity to normal human cells. These data are relevant and encourage further research into this plant species, which may contribute to the discovery of new herbal medicines that will help to mitigate the problems caused by oral pathogenic bacteria.