Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(11): 18318-18326, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381544

RESUMEN

We experimentally investigate near-infrared optical field generation through simultaneous three-wave mixing (TWM) and six-wave mixing (SWM) processes in room-temperature 85Rb atoms. The nonlinear processes are induced using three hyperfine levels in the D1 manifold, which cyclically interact with pump optical fields and an idler microwave field. The simultaneous appearance of TWM and SWM signals in discrete frequency channels is made possible by breaking the three-photon resonance condition. This gives rise to coherent population oscillations (CPO), which are observed experimentally. We explain through our theoretical model the role of CPO in the generation of the SWM signal and its enhancement due to parametric coupling with the input seed field in contrast to the TWM signal. Our experiment proves that a single tone microwave can be converted to multiple optical frequency channels. The simultaneous existence of TWM and SWM processes can potentially enable various types of amplification to be achieved with a single neutral atom transducer platform.

2.
Opt Express ; 29(11): 15940-15952, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154168

RESUMEN

A cyclic atomic level scheme interacting with an optical and a microwave field is proposed for the generation and group-delay control of few-photon optical pulses. Our analysis exploits a hybrid second order-nonlinearity under conditions of electromagnetically induced transparency to generate an optical pulse. The generated pulse can be delayed or advanced through microwave intensity control of the absolute phase of the second-order-nonlinearity. Importantly, this handle on group delay of the generated pulse is number density-independent. Our scheme is thus ideally suited for the generation and control of few-photon optical pulses using ultra-dilute atomic samples. Our results will enable microscopic atomic interface systems that serve as controllable delay channels for both classical and quantum signal processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA