Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 65, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167531

RESUMEN

An insight into the dynamics of soil phosphorus (P) pools with long-term cropping/management practices would help in designing efficient and sustainable management module(s). The study aimed to investigate the long-term impact of diversified rice-based rotations and variable nutrient management practices on the dynamic composition of P pools and their influence on systems' base-crop productivity in an alkaline soil of Indo-Gangetic plain (Fluvisol). Treatments consisted of four rotations [rice-wheat (R-W), rice-wheat-mungbean (R-W-Mb), rice-wheat-rice-chickpea (R-W-R-C), rice-chickpea (R-C)] each with three nutrient treatments [control (CT), integrated nutrient management (INM), sole-chemical fertilizers (CF)]. Notably, R-C exhibited higher levels of bioavailable-P (soluble-P, Ca2-P, labile-Po), particularly in subsurface soil depth (0.2-0.4 m) compared to other rotations. Likewise, the inclusion of chickpea every alternate year (R-W-R-C) resulted in higher Ca2-P (40%), labile-Pi (15%), labile-Po (11%), and moderately labile Po (8%) compared to R-W rotation demonstrating an increased significance of chickpea in maintaining a favorable soil P regime in alkaline soil. Both R-C and R-W-R-C reduced the surface-to-subsurface depth ratio (SSBR) of soluble-P and Ca2-P while increasing the ratio for microbial biomass P. Even with a suboptimal fertilizer-P rate, INM significantly increased soluble-P (4-33%), labile-Po (13-17%), microbial biomass P (10-26%), moderately labile-Po (4-17%) compared to CF and exhibited higher SSBR values. Correlation analysis demonstrated the substantial influence of very-labile carbon, microbial and phosphatase activities on P availability. The treatment-induced changes in labile-P pools significantly influenced rice (base-crop) yields. In conclusion, chickpea-inclusive diversification and INM could be a sustainable approach to enhance P bioavailability and crop productivity in tropical rice soils.

2.
Sci Rep ; 13(1): 6508, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081033

RESUMEN

Mono-cropping of maize-wheat, mechanical disintegration of soils, and continuous chemical fertilization have deteriorated soil health in the Indo-Gangetic Plains. We studied the long-term impact of pulse-based cropping systems with integrated nutrient management on soil physical and chemical properties and yield sustainability. We evaluated four different cropping systems: (1) maize-wheat (M-W), (2) maize-wheat-mungbean (M-W-Mb), (3) maize-wheat-maize-chickpea (M-W-M-C), (4) pigeonpea-wheat (P-W) each with three degrees of soil fertilization techniques: (1) unfertilized control (CT), (2) inorganic fertilization (RDF), and (3) integrated nutrient management (INM). The field experiment was undertaken in a split-plot design with three replications each year with a fixed layout. P-W and M-W-Mb systems enhanced soil properties such as volume expansion by 9-25% and porosity by 7-9% (p < 0.05) more than M-W, respectively. P-W and M-W-Mb increased soil organic carbon by 25-42% and 12-50% over M-W (RDF). P-W system enhanced water holding capacity and gravimetric moisture content by 10 and 11% (p < 0.05) than M-W. Pulse-based systems (P-W and M-W-Mb) had higher available nitrogen (8-11%), phosphorus (42-73%), and potassium (8-12%) over M-W (p < 0.05). M-W-Mb increased 26% maize yield and 21% wheat yield over M-W (p < 0.05) at the thirteenth crop cycle. P-W system had a higher sustainable yield index (p < 0.05) of wheat over the M-W. Thus, pulse inclusion in the cropping system in combination with INM can enhance physical and chemical properties vis-à-vis sustainable yield index over the cereal-cereal system.

3.
Front Microbiol ; 13: 1041124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36817102

RESUMEN

Pulses are an important source of energy and protein, essential amino acids, dietary fibers, minerals, and vitamins, and play a significant role in addressing global nutritional security. The global pulse area, production, and average productivity increased from 1961 to 2020 (60 years). Pulses are usually grown under rainfed, highly unstable, and complex production environments, with substantial variability in soil and environmental factors, high year-to-year output variability, and variation in soil moisture. Since the last six decades, there is not much satisfactory improvement in the yield of pulses because of their cultivation in harsh environments, coupled with their continuous ignorance of the farmers and governments in policy planning. As a result, the global food supplies through pulses remained negligible and amounted to merely ~1.0% of the total food supply and 1.2% of the vegan food system. In this situation, protein-rich food is still a question raised at the global level to make a malnutrition-free world. Pulses are a vital component of agricultural biological diversity, essential for tackling climate change, and serve as an energy diet for vegetarians. Pulses can mitigate climate change by reducing the dependence on synthetic fertilizers that artificially introduce nitrogen (N) into the soil. The high demand and manufacture of chemical fertilizers emit greenhouse gases (GHGs), and their overuse can harm the environment. In addition, the increasing demand for the vegetal protein under most global agroecosystems has to be met with under a stressed rainfed situation. The rainfed agroecosystem is a shelter for poor people from a significant part of the globe, such as Africa, South Asia, and Latin America. Nearly, 83% [over 1,260 million hectares (ha)] of cultivated land comes under rainfed agriculture, contributing significantly to global food security by supplying over 60% of the food. In rainfed areas, the limitation of natural resources with the shrinking land, continuous nutrient mining, soil fertility depletion, declining productivity factor, constantly depleting water availability, decreasing soil carbon (C) stock, augmented weed menace, ecological instability, and reduced system productivity are creating a more challenging situation. Pulses, being crops of marginal and semi-marginal soils of arid and semi-arid climates, require less input for cultivation, such as water, nutrients, tillage, labor, and energy. Furthermore, accommodation of the area for the cultivation of pulses reduces the groundwater exploitation, C and N footprints, agrochemical application in the cropping systems, and ill effects of climate change due to their inherent capacity to withstand harsh soil to exhibit phytoremediation properties and to stand well under stressed environmental condition. This article focuses on the role of pulses in ecological services, human wellbeing, soil, environmental health, and economic security for advanced sustainability. Therefore, this study will enhance the understanding of productivity improvement in a system-based approach in a rainfed agroecosystem through the involvement of pulses. Furthermore, the present study highlighted significant research findings and policy support in the direction of exploring the real yield potential of pulses. It will provide a road map to producers, researchers, policymakers, and government planners working on pulses to promote them in rainfed agroecosystems to achieve the United Nations (UN's) Sustainable Development Goals (SDGs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...