Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136973

RESUMEN

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Asunto(s)
Citocromos b , Synechocystis , Transporte de Electrón/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxidación-Reducción , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Plastoquinona/química
2.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194803, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35272049

RESUMEN

The availability of inorganic carbon (Ci) as the source for photosynthesis is fluctuating in aquatic environments. Despite the involvement of transcriptional regulators CmpR and NdhR in regulating genes encoding Ci transporters at limiting CO2, the Ci-sensing mechanism is largely unknown among cyanobacteria. Here we report that a cAMP-dependent transcription factor SyCRP1 mediates Ci response in Synechocystis. The mutant ∆sycrp1 exhibited a slow-growth phenotype and reduced maximum rate of bicarbonate-dependent photosynthetic electron transport (Vmax) compared to wild-type at the scarcity of CO2. The number of carboxysomes was decreased significantly in the ∆sycrp1 at low CO2 consistent with its reduced Vmax. The DNA microarray analysis revealed the upregulation of genes encoding Ci transporters in ∆sycrp1. The membrane-localized SyCRP1 was released into the cytosol in wild-type cells shifted from low to high CO2 or upon cAMP treatment. Soluble His-tagged SyCRP1 was shown to target DNA-binding sites upstream of the Ci-regulated genes sbtA and ccmK3. In addition, cAMP enhanced the binding of SyCRP1 to its target sites. Our data collectively suggest that the Ci is sensed through the second messenger cAMP releasing membrane-bound SyCRP1 into cytoplasm under sufficient CO2 conditions. Hence, SyCRP1 is a possible regulator of carbon concentrating mechanism, and such a regulation might be mediated via sensing Ci levels through cAMP in Synechocystis.


Asunto(s)
Synechocystis , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , ADN/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Factores de Transcripción/metabolismo
3.
J Exp Bot ; 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499142

RESUMEN

RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.

4.
3 Biotech ; 11(8): 392, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34350093

RESUMEN

Alkalihalobacillus okhensis is a halo-alkaliphile with optimal growth at pH 10 and 5% NaCl. Phylogenetic analysis revealed habitat-dependent segregation of Bacilli, with all the alkalihalophiles forming a separate clade. It uses acidification of the external medium and pH-dependent cell wall reinforcement to survive sodic environments. Interestingly, comparative genome analysis revealed the genome encodes surface proteins with a high proportion of acidic amino acids compared to their orthologs of B. subtilis, a piece of direct evidence for adaptive evolution. It has a relatively higher number of genes involved in the metabolism of osmolytes and sodium-dependent transporters when compared to B. subtilis. Growth of Alkalihalobacillus okhensis strain Kh10-101 T (hereafter A. okhensis) is Na+ dependent, with a minimum of 4% NaCl at neutral pH, but 0.5% NaCl is enough at pH 10. It tolerated a sudden increase in salt concentration and exhibited an elongated phenotype but could not tolerate a sudden pH shift from 7 to 11. The cell envelope got damaged, confirming that the pH regulation through cell wall reinforcement is key to survival at a high-pH condition. We report for the first time a comprehensive genome analysis of Bacilli to delineate the mechanisms evolved for adaptation to halo-alkaline conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02938-x.

5.
Front Microbiol ; 10: 1308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293528

RESUMEN

The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli. The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (ΔbdcR, ΔmhpA, ΔmhpB, ΔryfA, and ΔtolA) and the thickness of biofilm reduced from 17.2 µm in the wildtype to 1.5 to 4.8 µm in the mutants. Mutants ΔytfR and ΔmdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in ΔmhpB. The 5 mutants which lost their ability to form biofilm (ΔbdcR, ΔmhpA, ΔmhpB, ΔtolA, and ΔryfA) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli. But ΔmdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA) in biofilm formation in ocular E. coli. In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by targeting the genes bdcR, mhpA, mhpB, ryfA, and tolA.

6.
J Biol Chem ; 292(10): 4222-4234, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28104802

RESUMEN

Two putative heat-responsive genes, ssl2245 and sll1130, constitute an operon that also has characteristics of a toxin-antitoxin system, thus joining several enigmatic features. Closely related orthologs of Ssl2245 and Sll1130 exist in widely different bacteria, which thrive under environments with large fluctuations in temperature and salinity, among which some are thermo-epilithic biofilm-forming cyanobacteria. Transcriptome analyses revealed that the clustered regularly interspaced short palindromic repeats (CRISPR) genes as well as several hypothetical genes were commonly up-regulated in Δssl2245 and Δsll1130 mutants. Genes coding for heat shock proteins and pilins were also induced in Δsll1130 We observed that the majority of cells in a Δsll1130 mutant strain remained unicellular and viable after prolonged incubation at high temperature (50 °C). In contrast, the wild type formed large cell clumps of dead and live cells, indicating the attempt to form biofilms under harsh conditions. Furthermore, we observed that Sll1130 is a heat-stable ribonuclease whose activity was inhibited by Ssl2245 at optimal temperatures but not at high temperatures. In addition, we demonstrated that Ssl2245 is physically associated with Sll1130 by electrostatic interactions, thereby inhibiting its activity at optimal growth temperature. This association is lost upon exposure to heat, leaving Sll1130 to exhibit its ribonuclease activity. Thus, the activation of Sll1130 leads to the degradation of cellular RNA and thereby heat-induced programmed cell death that in turn supports the formation of a more resistant biofilm for the surviving cells. We suggest to designate Ssl2245 and Sll1130 as MazE and MazF, respectively.


Asunto(s)
Antitoxinas/farmacología , Proteínas Bacterianas/farmacología , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Synechocystis/crecimiento & desarrollo , Toxinas Biológicas/farmacología , Muerte Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Perfilación de la Expresión Génica , Calor , Factores Inmunológicos/farmacología , Filogenia , Synechocystis/efectos de los fármacos , Synechocystis/metabolismo
7.
3 Biotech ; 6(1): 74, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28330144

RESUMEN

UpCoT is a pipeline tool developed by automating the series of steps involved in prediction of cis-regulatory elements. UpCoT generates orthologs for each gene in target genome using bi-directional best blast hit against the reference genomes, then identifies potential orthologous transcriptional units using intergenic distance. Finally it generates the FASTA files containing upstream sequences of orthologous transcriptional units of each gene in target genome. The inputs of UpCoT are protein sequence files (*.faa), genome sequence files (*.fna) and gene co-ordinate files (*.ptt) for target and reference genomes. The clustered-upstream DNA sequences can be used by motif prediction tool, such as MEME, Bio-prospector, Gibbs motif sampler, MDscan for prediction of conserved DNA elements. We tested the performance of UpCoT by selecting the genome of Synechocystis sp PCC 6803 as the target and 13 different cyanobacterial genomes as reference. The clustered upstream sequences generated by UpCoT of groES, ycf24 and nirA were used for cis-regulatory element prediction. The results were consistent with the experimentally identified cis-regulatory elements. Therefore, UpCoT is a reliable and automated pipeline package for prediction of orthologs, orthologous transcriptional units, and orthologous upstream sequences of a selected prokaryotic genome. UpCoT can be downloaded from http://jssplab.uohyd.ac.in/upcot/ .

8.
Genom Data ; 6: 283-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697400

RESUMEN

We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000.

9.
Biochem J ; 449(3): 751-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23088579

RESUMEN

A conserved hypothetical protein, Sll1130, is a novel transcription factor that regulates the expression of major heat-responsive genes in Synechocystis sp. PCC6803. Synechocystis exhibited an increased thermotolerance due to disruption of sll1130. Δsll1130 cells recovered much faster than wild-type cells after they were subjected to heat shock (50°C) for 30 min followed by recovery at 34°C for 48 h. In Δsll1130 cultures, 70% of the cells were viable compared with the wild-type culture in which only 30% of the cells were viable. DNA microarray analysis revealed that in Δsll1130, expression of the heat-responsive genes such as htpG, hspA, isiA, isiB and several hypothetical genes were up-regulated. Sll1130 binds to a conserved inverted-repeat (GGCGATCGCC) located in the upstream region of the above genes. In addition, both the transcript and protein levels of sll1130 were immediately down-regulated upon shift of wild-type cells from 34 to 42°C. Collectively the results of the present study suggest that Sll1130 is a heat-responsive transcriptional regulator that represses the expression of certain heat-inducible genes at optimum growth temperatures. Upon heat shock, a quick drop in the Sll1130 levels leads to de-repression of the heat-shock genes and subsequent thermal acclimation. On the basis of the findings of the present study, we present a model which describes the heat-shock response involving Sll1130.


Asunto(s)
Synechocystis/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Synechocystis/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
10.
PLoS One ; 7(11): e49425, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185330

RESUMEN

CyanoPhyChe is a user friendly database that one can browse through for physico-chemical properties, structure and biochemical pathway information of cyanobacterial proteins. We downloaded all the protein sequences from the cyanobacterial genome database for calculating the physico-chemical properties, such as molecular weight, net charge of protein, isoelectric point, molar extinction coefficient, canonical variable for solubility, grand average hydropathy, aliphatic index, and number of charged residues. Based on the physico-chemical properties, we provide the polarity, structural stability and probability of a protein entering in to an inclusion body (PEPIB). We used the data generated on physico-chemical properties, structure and biochemical pathway information of all cyanobacterial proteins to construct CyanoPhyChe. The data can be used for optimizing methods of expression and characterization of cyanobacterial proteins. Moreover, the 'Search' and data export options provided will be useful for proteome analysis. Secondary structure was predicted for all the cyanobacterial proteins using PSIPRED tool and the data generated is made accessible to researchers working on cyanobacteria. In addition, external links are provided to biological databases such as PDB and KEGG for molecular structure and biochemical pathway information, respectively. External links are also provided to different cyanobacterial databases. CyanoPhyChe can be accessed from the following URL: http://bif.uohyd.ac.in/cpc.


Asunto(s)
Química Física/métodos , Cianobacterias/metabolismo , Algoritmos , Aminoácidos/química , ADN/química , Bases de Datos de Proteínas , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Genoma Bacteriano , Concentración de Iones de Hidrógeno , Cuerpos de Inclusión/metabolismo , Internet , Peso Molecular , Plásmidos/metabolismo , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína/métodos , Synechocystis/metabolismo , Interfaz Usuario-Computador
11.
PLoS One ; 7(5): e36714, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22590591

RESUMEN

Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to ß-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and ß-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on ß-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥ 0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Quitinasas/metabolismo , Serratia/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Quitinasas/química , Quitinasas/genética , Genoma Bacteriano/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serratia/química , Serratia/genética
12.
Biochim Biophys Acta ; 1817(9): 1525-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22575444

RESUMEN

We investigated the role of a cold-inducible and redox-regulated RNA helicase, CrhR, in the energy redistribution and adjustment of stoichiometry between photosystem I (PSI) and photosystem II (PSII), at low temperature in Synechocystis sp. PCC 6803. The results suggest that during low temperature incubation, i.e., when cells are shifted from 34°C to 24°C, wild type cells exhibited light-induced state transitions, whereas the mutant deficient in CrhR failed to perform the same. At low temperature, wild type cells maintained the plastoquinone (PQ) pool in the reduced state due to enhanced respiratory electron flow to the PQ pool, whereas in ∆crhR mutant cells the PQ pool was in the oxidized state. Wild type cells were in state 2 and ∆crhR cells were locked in state 1 at low temperature. In both wild type and ∆crhR cells, a fraction of PSI trimers were changed to PSI monomers. However, in ∆crhR cells, the PSI trimer content was significantly decreased. Expression of photosystem I genes, especially the psaA and psaB, was strongly down-regulated due to oxidation of downstream components of PQ in ∆crhR cells at low temperature. We demonstrated that changes in the low temperature-induced energy redistribution and regulation of photosystem stoichiometry are acclimatization responses exerted by Synechocystis cells, essentially regulated by the RNA helicase, CrhR, at low temperature.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , ARN Helicasas/fisiología , Synechocystis/enzimología , Frío , Metabolismo Energético , Regulación de la Expresión Génica , Complejo de Proteína del Fotosistema I/genética
13.
J Proteome Res ; 10(8): 3674-89, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21678991

RESUMEN

One of the earliest and largest transcriptional responses that occur during exposure of Synechocystis sp. PCC6803 to cold is the induction of the crhR RNA helicase transcript. We show that crhR deletion results in failure to cold acclimate: there is reduced growth at 24 °C and marked impairment of growth at 20 °C. 2D-DIGE, using five biological replicates, was used to analyze the proteomic differences between the wild-type and ΔcrhR strains grown at (1) 34 °C and (2) following transfer from 34 to 24 °C (cold-acclimation). Sixteen significantly differentially expressed proteins were identified between the two strains grown at 34 °C. Forty-three distinct proteins were identified that responded to cold-acclimation of the wild-type and 34 proteins for the mutant, with only 26 proteins common to both. A large proportion of the proteomic responses (76.5%) could not be predicted from published transcriptomic data. Only modest similarity is observed between proteomic and transcriptomic responses (r = 0.54-0.70). We propose functions for three previously hypothetical proteins. We suggest molecular targets for CrhR action and identify downstream regulated events in metabolism.


Asunto(s)
Adaptación Fisiológica , Frío , Proteómica , ARN Helicasas/metabolismo , Synechocystis/fisiología , Electroforesis en Gel de Poliacrilamida , Mutación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Synechocystis/enzimología , Synechocystis/metabolismo
14.
Arch Microbiol ; 192(2): 85-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20049417

RESUMEN

Rigidification of the membrane appears to be the primary signal perceived by a bacterium when exposed to low temperature. The perception and transduction of the signal then occurs through a two-component signal transduction pathway consisting of a membrane-associated sensor and a cytoplasmic response regulator and as a consequence a set of cold-regulated genes are activated. In addition, changes in DNA topology due to change in temperature may also trigger cold-responsive mechanisms. Inducible proteins thus accumulated repair the damage caused by cold stress. For example, the fluidity of the rigidified membrane is restored by altering the levels of saturated and unsaturated fatty acids, by altering the fatty acid chain length, by changing the proportion of cis to trans fatty acids and by changing the proportion of anteiso to iso fatty acids. Bacteria could also achieve membrane fluidity changes by altering the protein content of the membrane and by altering the levels of the type of carotenoids synthesized. Changes in RNA secondary structure, changes in translation and alteration in protein conformation could also act as temperature sensors. This review highlights the various strategies by which bacteria senses low temperature signal and as to how it responds to the change.


Asunto(s)
Bacterias/metabolismo , Frío , Regulación Bacteriana de la Expresión Génica/fisiología , Bacterias/genética , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Microbiology (Reading) ; 156(Pt 2): 442-451, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19926653

RESUMEN

The crhR gene for RNA helicase, CrhR, was one of the most highly induced genes when the cyanobacterium Synechocystis sp. PCC 6803 was exposed to a downward shift in ambient temperature. Although CrhR may be involved in the acclimatization of cyanobacterial cells to low-temperature environments, its functional role during the acclimatization is not known. In the present study, we mutated the crhR gene by replacement with a spectinomycin-resistance gene cassette. The resultant DeltacrhR mutant exhibited a phenotype of slow growth at low temperatures. DNA microarray analysis of the genome-wide expression of genes, and Northern and Western blotting analyses indicated that mutation of the crhR gene repressed the low-temperature-inducible expression of heat-shock genes groEL1 and groEL2, at the transcript and protein levels. The kinetics of the groESL co-transcript and the groEL2 transcript after addition of rifampicin suggested that CrhR stabilized these transcripts at an early phase, namely 5-60 min, during acclimatization to low temperatures, and enhanced the transcription of these genes at a later time, namely 3-5 h. Our results suggest that CrhR regulates the low-temperature-inducible expression of these heat-shock proteins, which, in turn, may be essential for acclimatization of Synechocystis cells to low temperatures.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , ARN Helicasas/metabolismo , Synechocystis/enzimología , Aclimatación/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Northern Blotting , Chaperonina 10/genética , Chaperonina 60/genética , Frío , Prueba de Complementación Genética , Proteínas de Choque Térmico/biosíntesis , Respuesta al Choque Térmico/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Helicasas/genética , Synechocystis/fisiología
16.
Mol Biosyst ; 5(12): 1904-12, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19763333

RESUMEN

Changes in the supercoiling of genomic DNA play an important role in the regulation of gene expression. We compared the genome-wide expression of genes in cells of the cyanobacterium Synechocystis sp. PCC 6803 when they were subjected to salt, cold, and heat stress, in the presence of novobiocin, an inhibitor of DNA gyrase, and in its absence. The analysis revealed that the expression of a large number of stress-inducible genes depends on the extent of genomic DNA supercoiling. The function of the two-component regulatory systems, which are known as sensors and transducers of salt, cold, and heat stress, depends on, and might be controlled by, the degree of supercoiling of the genomic DNA. These results suggest that stress-induced changes in superhelicity of genomic DNA provide an important permissive background for successful acclimatization of cyanobacterial cells to stress conditions.


Asunto(s)
ADN Superhelicoidal/fisiología , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico/fisiología , Synechocystis/fisiología , Northern Blotting , Análisis por Conglomerados , ADN Superhelicoidal/genética , Inhibidores Enzimáticos/farmacología , Novobiocina/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Cloruro de Sodio/química , Synechocystis/genética , Temperatura
17.
Int J Syst Evol Microbiol ; 53(Pt 1): 183-187, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12656171

RESUMEN

Strain CMS 76orT, an orange-pigmented bacterium, was isolated from a cyanobacterial mat sample from a pond located in McMurdo Dry Valley, Antarctica. On the basis of chemotaxonomic and phylogenetic properties, strain CMS 76orT was identified as a member of the genus Kocuria. It exhibited a 16S rDNA similarity of 99.8% and DNA-DNA similarity of 71% with Kocuria rosea (ATCC 186T). Phenotypic traits confirmed that strain CMS 78orT and K. rosea were well differentiated. Furthermore, strain CMS 76orT could be differentiated from the other reported species of Kocuria, namely Kocuria kristinae (ATCC 27570T), Kocuria varians (ATCC 15306T), Kocuria rhizophila (DSM 11926T) and Kocuria palustris (DSM 11025T), on the basis of a number of phenotypic features. Therefore, it is proposed that strain CMS 76orT (= MTCC 3702T = DSM 14382T) be assigned to a novel species of the genus Kocuria, as Kocuria polaris.


Asunto(s)
Micrococcaceae/clasificación , Micrococcaceae/aislamiento & purificación , Regiones Antárticas , Cianobacterias/aislamiento & purificación , Ecosistema , Micrococcaceae/genética , Micrococcaceae/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Pigmentación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Agua
18.
Z Naturforsch C J Biosci ; 57(9-10): 836-42, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12440721

RESUMEN

Two-week-old pea (Pisum sativum var. Arkal) plants were subjected to elevated temperature (38 degrees C/42 degrees C) in dark for 14-15 h. The effect of heat treatment on light-induced phosphorylation of LHCII and LHCII migration in the thylakoid membranes were investigated. The heat treatment did cause a substantial (more than two fold) increase in the extent of LHCII phosphorylation as compared to the control. Upon separation of appressed and non-appressed thylakoid fractions by digitonin treatment, the heat-treated samples showed a decrease in LHCII-related polypeptides from the grana stack (appressed region) over the control. Further, a small increase in the intensity of these (LHCII-related) bands was detected in stromal thylakoid fraction (non-appressed membranes). This suggests an enhanced extent of migration of phosphorylated LHCII from appressed to non-appressed regions due to in vivo heat treatment of pea plants. We also isolated the LHCII from control and heat treated (42 degrees C) pea seedlings. Analysis of CD spectra revealed a 5-6 nm blue shift in the 638 nm negative peak in heat treated samples suggesting alteration in the organization of Chl b in the LHCII macro-aggregates. These results suggest that in vivo heat stress not only alters the extent of migration of LHCII to stromal region, but also affects the light harvesting mechanism by LHCII associated with the grana region.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Pisum sativum/fisiología , Tilacoides/ultraestructura , Autorradiografía , Clorofila/metabolismo , Clorofila A , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Calor , Luz , Complejos de Proteína Captadores de Luz , Radioisótopos de Fósforo , Fosforilación , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Termodinámica , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...