Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 59(2): 154-160, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31031429

RESUMEN

Co-digestion of biowastes for hydrogen (H2) production using defined mixed cultures can overcome the high risk of failure due to contamination and imbalanced nutrient status. H2 production from biowastes-pea-shells, potato peels (PP), onion peels (OP) and apple pomace, either individually or in various combinations was evaluated by hydrolyzing with defined hydrolytic mixed bacterial culture (MHC5) and subjecting the hydrolysate to mixture of defined H2 producers (MMC6). Co-digestion of OP and PP hydrolysate supplemented at H2 production stage with GM-2 and M-9 media resulted in 95 and 102 l H2/kg of Total solids (TS), respectively compared to 84 l H2/kg of TS in control. Upscaling the process by digesting 4.0 l slurry (16-fold) resulted in 88.5 and 95 l H2/kg of TS, respectively compared to 72 l H2/kg of TS in control. Thus, H2 production by co-digestion of biowastes could be improved through the supplementation with very dilute medium (0.1 ×) and selection of suitable biowastes under unsterile conditions. The overall efficiency can be further enhanced by integrating it with bioprocesses for biopolymers such as polyhydroxyalkanoates and or biofuels like methane production.

2.
PLoS One ; 13(7): e0199059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995877

RESUMEN

The increasing water crisis makes fresh water a valuable resource, which must be used wisely. However, with growing population and inefficient waste treatment systems, the amount of wastewater dispelled in rivers is increasing abominably. Utilizing this freely available waste-water along with biodiesel industry waste- crude glycerol for bio-hydrogen production is being reported here. The bacterial cultures of Bacillus thuringiensis strain EGU45 and Bacillus amyloliquefaciens strain CD16 produced2.4-3.0 L H2/day/L feed during a 60 days continuous culture system at hydraulic retention time of 2 days. An average H2 yield of 100-120 L/L CG was reported by the two strains. Recycling of the effluent by up to 25% resulted in up to 94% H2 production compared to control.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Bacillus thuringiensis/metabolismo , Biocombustibles/análisis , Hidrógeno/metabolismo , Aguas Residuales/química , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Reactores Biológicos , Células Inmovilizadas , Glicerol/metabolismo , Humanos , Cinética , Lignina/química
3.
Indian J Microbiol ; 58(2): 127-137, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29651171

RESUMEN

Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H2 and CH4). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H2 and CH4 production despite its huge potential for complete waste degradation.

4.
Appl Biochem Biotechnol ; 185(1): 179-190, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29101733

RESUMEN

Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H2/day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Bacillus thuringiensis/metabolismo , Biocombustibles , Células Inmovilizadas/metabolismo , Bacillus amyloliquefaciens/citología , Bacillus thuringiensis/citología , Células Inmovilizadas/citología
5.
Indian J Microbiol ; 57(1): 109-111, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28148986

RESUMEN

Biofilm forming bacteria play a vital role in causing infectious diseases and for enhancing the efficiency of the bioremediation process through immobilization. Different media and conditions have been reported for detecting biofilm forming bacteria, however, they are not quite rapid. Here, we propose the use of a simple medium which can be used for detecting biofilm former, and also provide a mechanism to regulate the expression of biofilm formation process.

6.
Indian J Microbiol ; 56(2): 113-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27570302

RESUMEN

The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.

7.
Indian J Microbiol ; 56(1): 1-18, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843692

RESUMEN

Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA