Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297233

RESUMEN

Urinary tract infections (UTIs) affect a major proportion of the world population but have limited non-antibiotic-based therapeutic and preventative strategies against UTIs. Facultative intracellular uropathogens such as strains of uropathogenic E. coli, K. pneumoniae, E. faecalis, E. cloacae are well-known uropathogens causing UTIs. These pathogens manipulate several host-signaling pathways during infection, which contributes to recurrent UTIs and inappropriate antibiotic application. Since host cell receptor tyrosine kinases (RTKs) are critical for the entry, survival and replication of intracellular pathogens, we investigated whether different uropathogens require host EPHA2 receptors for their intracellular survival using a cell culture model of intracellular infection in human bladder epithelial cells (BECs). Infection of BECs with seven different uropathogens enhanced the expression levels and activation of EPHA2. The significance of EPHA2 signaling for uropathogen infection was investigated by silencing EPHA2 expression using RNA interference or by inhibiting the kinase activity of EPHA2 using small-molecule compounds such as dasatinib or ALW-II-41-27. Both preventive and therapeutic tyrosine kinase inhibition significantly reduced the intracellular bacterial load. Thus, our results demonstrate the involvement of host cell EPHA2 receptor during intracellular uropathogen infection of BECs, and targeting RTK activity is a viable non-antibiotic therapeutic strategy for managing recurrent UTIs.

2.
Diagnostics (Basel) ; 12(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36140465

RESUMEN

Rat basophilic leukaemia (RBL) cells have been used for decades as a model of high-affinity Immunoglobulin E (IgE) receptor (FcεRI) signalling. Here, we describe the generation and use of huNPY-mRFP, a new humanised fluorescent IgE reporter cell line. Fusion of Neuropeptide Y (NPY) with monomeric red fluorescent protein (mRFP) results in targeting of fluorescence to the granules and its fast release into the supernatant upon IgE-dependent stimulation. Following overnight sensitisation with serum, optimal release of fluorescence upon dose-dependent stimulation with allergen-containing extracts could be measured after 45 min, without cell lysis or addition of any reagents. Five substitutions (D194A, K212A, K216A, K226A, and K230A) were introduced into the FcεRIα cDNA used for transfection, which resulted in the removal of known endoplasmic reticulum retention signals and high surface expression of human FcεRIα* in huNPY-mRFP cells (where * denotes the penta-substituted variant), comparable to the ~500,000 FcεRIα molecules per cell in the RS-ATL8 humanised luciferase reporter, which is a human FcεRIα/FcεRIγ double transfectant. The huNPY-mRFP reporter was used to demonstrate engagement of specific IgE in sera of Echinococcus granulosus-infected individuals by E. granulosus elongation factor EgEF-1ß and, to a lesser extent, by EgEF-1δ, which had been previously described as IgE-immunoreactive EgEF-1ß/δ.

3.
J Allergy Clin Immunol ; 149(2): 698-707.e3, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34333031

RESUMEN

BACKGROUND: IgE to galactose alpha-1,3 galactose (alpha-gal) causes alpha-gal syndrome (delayed anaphylaxis after ingestion of mammalian meat). Development of sensitization has been attributed to tick bites; however, the possible role of other parasites has not been well studied. OBJECTIVE: Our aims were to assess the presence, relative abundances, and site of localization of alpha-gal-containing proteins in common ectoparasites and endoparasites endemic in an area of high prevalence of alpha-gal syndrome, as well as to investigate the ability of ascaris antigens to elicit a reaction in a humanized rat basophil in vitro sensitization model. METHODS: Levels of total IgE, Ascaris-specific IgE, and alpha-gal IgE were measured in sera from patients with challenge-proven alpha-gal syndrome and from controls without allergy. The presence, concentration, and localization of alpha-gal in parasites were assessed by ELISA, Western blotting, and immunohistochemistry. The ability of Ascaris lumbricoides antigen to elicit IgE-dependent reactivity was demonstrated by using the RS-ATL8 basophil reporter system. RESULTS: Alpha-gal IgE level correlated with A lumbricoides-specific IgE level. Alpha-gal protein at 70 to 130 kDa was detected in A lumbricoides at concentrations higher than those found in Rhipicephalus evertsi and Amblyomma hebraeum ticks. Immunohistochemistry was used to localize alpha-gal in tick salivary acini and the helminth gut. Non-alpha-gal-containing A lumbricoides antigens activated RS-ATL8 basophils primed with serum from subjects with alpha-gal syndrome. CONCLUSION: We demonstrated the presence, relative abundances, and site of localization of alpha-gal-containing proteins in parasites. The activation of RS-ATL8 IgE reporter cells primed with serum from subjects with alpha-gal syndrome on exposure to non-alpha-gal-containing A lumbricoides proteins indicates a possible role of exposure to A lumbricoides in alpha-gal sensitization and clinical reactivity.


Asunto(s)
Ascaris lumbricoides/inmunología , Hipersensibilidad a los Alimentos/etiología , Garrapatas/inmunología , Animales , Antígenos Helmínticos/inmunología , Células Cultivadas , Disacáridos/análisis , Humanos , Inmunoglobulina E/inmunología , Ratas
4.
Parasitol Res ; 121(4): 1137-1144, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34767081

RESUMEN

Immunoglobulin E (IgE) is thought to have evolved to protect mammalian hosts against parasitic infections or toxins and plays a central role in the pathogenesis, diagnosis, and therapy of IgE-mediated allergy. Despite the prominence of IgE responses in most parasitic infections, and in stark contrast to its use in the diagnosis of allergy, this isotype is almost completely unexploited for parasite diagnosis. Here, we discuss the perceived or real limitations of IgE-based diagnosis in parasitology and suggest that the recent creation of a new generation of very sensitive cellular IgE-based reporters may represent a powerful new diagnostic platform, but needs to be based on a very careful choice of diagnostic allergens.


Asunto(s)
Hipersensibilidad , Enfermedades Parasitarias , Alérgenos , Animales , Humanos , Hipersensibilidad/diagnóstico , Inmunoglobulina E , Mamíferos , Enfermedades Parasitarias/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA