Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Dalton Trans ; 52(24): 8193-8197, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37185998

RESUMEN

A base-free, acceptorless dehydrogenative coupling of ethanol to ethyl acetate is presented. By using the pincer complex (PhPNP)RuH(BH4)(CO) (0.25 mol%) in the presence of m-xylene as the co-solvent, the catalysis proceeds with up to >99% conversion and >99% yield after 24 h at 120 °C. A scaled-up reaction is also effective under similar conditions.

3.
Nature ; 597(7874): 51-56, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471273

RESUMEN

Profuse dendritic-synaptic interconnections among neurons in the neocortex embed intricate logic structures enabling sophisticated decision-making that vastly outperforms any artificial electronic analogues1-3. The physical complexity is far beyond existing circuit fabrication technologies: moreover, the network in a brain is dynamically reconfigurable, which provides flexibility and adaptability to changing environments4-6. In contrast, state-of-the-art semiconductor logic circuits are based on threshold switches that are hard-wired to perform predefined logic functions. To advance the performance of logic circuits, we are re-imagining fundamental electronic circuit elements by expressing complex logic in nanometre-scale material properties. Here we use voltage-driven conditional logic interconnectivity among five distinct molecular redox states of a metal-organic complex to embed a 'thicket' of decision trees (composed of multiple if-then-else conditional statements) having 71 nodes within a single memristor. The resultant current-voltage characteristic of this molecular memristor (a 'memory resistor', a globally passive resistive-switch circuit element that axiomatically complements the set of capacitor, inductor and resistor) exhibits eight recurrent and history-dependent non-volatile switching transitions between two conductance levels in a single sweep cycle. The identity of each molecular redox state was determined with in situ Raman spectroscopy and confirmed by quantum chemical calculations, revealing the electron transport mechanism. Using simple circuits of only these elements, we experimentally demonstrate dynamically reconfigurable, commutative and non-commutative stateful logic in multivariable decision trees that execute in a single time step and can, for example, be applied as local intelligence in edge computing7-9.

4.
Nat Nanotechnol ; 15(5): 380-389, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203436

RESUMEN

Electronic symmetry breaking by charge disproportionation results in multifaceted changes in the electronic, magnetic and optical properties of a material, triggering ferroelectricity, metal/insulator transition and colossal magnetoresistance. Yet, charge disproportionation lacks technological relevance because it occurs only under specific physical conditions of high or low temperature or high pressure. Here we demonstrate a voltage-triggered charge disproportionation in thin molecular films of a metal-organic complex occurring in ambient conditions. This provides a technologically relevant molecular route for simultaneous realization of a ternary memristor and a binary memcapacitor, scalable down to a device area of 60 nm2. Supported by mathematical modelling, our results establish that multiple memristive states can be functionally non-volatile, yet discrete-a combination perceived as theoretically prohibited. Our device could be used as a binary or ternary memristor, a binary memcapacitor or both concomitantly, and unlike the existing 'continuous state' memristors, its discrete states are optimal for high-density, ultra-low-energy digital computing.

5.
Chem Sci ; 11(34): 9226-9236, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34123171

RESUMEN

We demonstrate a strategy inspired by natural siderophores for the dissolution of platinum nanoparticles that could enable their size-selective synthesis, toxicological assessment, and the recycling of this precious metal. From the fabrication of electronics to biomedical diagnosis and therapy, PtNPs find increasing use. Mitigating concerns over potential human toxicity and the need to recover precious metal from industrial debris motivates the study of bio-friendly reagents to replace traditional harsh etchants. Herein, we report a family of redox-active siderophore-viz. π-acceptor azo aromatic ligands (L) that spontaneously ionize and chelate Pt atoms selectively from nanoparticles of size ≤6 nm. The reaction produces a monometallic diradical complex, PtII(L˙-)2, isolated as a pure crystalline compound. Density functional theory provides fundamental insights on the size dependent PtNP chemical reactivity. The reported findings reveal a generalized platform for designing π-acceptor ligands to adjust the size threshold for dissolution of Pt or other noble metals NPs. Our approach may, for example, be used for the generation of Pt-based therapeutics or for reclamation of Pt nano debris formed in catalytic converters or electronic fabrication industries.

6.
Inorg Chem ; 57(12): 6816-6824, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29863859

RESUMEN

Electroprotic storage materials, though invaluable in energy-related research, are scanty among non-natural compounds. Herein, we report a zinc(II) complex of the ligand 2,6-bis(phenylazo)pyridine (L), which acts as a multiple electron and proton reservoir during catalytic dehydrogenation of alcohols to aldehydes/ketones. The redox-inactive metal ion Zn(II) serves as an oxophilic Lewis acid, while the ligand behaves as efficient storage of electron and proton. Synthesis, X-ray structure, and spectral characterizations of the catalyst, ZnLCl2 (1a) along with the two hydrogenated complexes of 1a, ZnH2LCl2 (1b), and ZnH4LCl2 (1c) are reported. It has been argued that the reversible azo-hydrazo redox couple of 1a controls aerobic dehydrogenation of alcohols. Hydrogenated complexes are hyper-reactive and quantitatively reduce O2 and para-benzoquinone to H2O2 and para-hydroquinone, respectively. Plausible mechanistic pathways for alcohol oxidation are discussed based on controlled experiments, isotope labeling, and spectral analysis of intermediates.

7.
Inorg Chem ; 55(19): 9602-9610, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27646531

RESUMEN

Design of an efficient new catalyst that can mimic the enzymatic pathway for catalytic dehydrogenation of liquid fuels like alcohols is described in this report. The catalyst is a nickel(II) complex of 2,6-bis(phenylazo)pyridine ligand (L), which possesses the above requisite with excellent catalytic efficiencies for controlled dehydrogenation of alcohols using ligand-based redox couple. Mechanistic studies supported by density functional theory calculations revealed that the catalytic cycle involves hydrogen atom transfer via quantum mechanical tunneling with significant kH/kD isotope effect of 12.2 ± 0.1 at 300 K. A hydrogenated intermediate compound, [NiIICl2(H2L)], is isolated and characterized. The results are promising in the context of design of cheap and efficient earth-abundant metal catalyst for alcohol oxidation and hydrogen storage.


Asunto(s)
Alcoholes/química , Complejos de Coordinación/química , Aldehídos/síntesis química , Compuestos Azo/química , Catálisis , Hidrogenación , Cetonas/síntesis química , Ligandos , Modelos Químicos , Níquel/química , Oxidación-Reducción , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...