Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 9: 51-6, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27626054

RESUMEN

Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article "Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells" (Chhuon et al., in press [1]).

2.
J Proteomics ; 145: 246-253, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27397611

RESUMEN

UNLABELLED: We have previously shown (i) that the cystic fibrosis transmembrane regulator (CFTR) locates to lipid raft-like microdomains of epithelial cells upon TNF-α proinflammatory stimulation; and (ii) that TNF-α increases the membrane localization and the channel function of F508del-mutated CFTR. In the present work, we hypothesized that CFTR mutations modify the proteome of lipid rafts in the same proinflammatory conditions. We prepared lipid rafts from HeLa cells transfected with either wild-type or F508del-CFTR and incubated for 10min with 100U/mL of TNF-α. Proteins were extracted, trypsin digested, and peptides analyzed by high resolution MS. Proteins were quantified by a stable isotope labeling with amino acids in cell culture approach. Out of the 22 proteins differentially recruited in lipid rafts after proinflammatory exposure, 17 were increased in F508del cells with respect to wild-type, including two G-protein coupled receptors, three anion transporters, and one cell surface mucin. In both HeLa and bronchial epithelial cells we confirmed that G-protein coupled receptor 5A relocates to lipid rafts along with F508del-CFTR after TNF-α treatment. These results could enlighten the cross-talk between CFTR and TNF-α and its impact on the cell response to proinflammatory challenge. BIOLOGICAL SIGNIFICANCE: CFTR mutations are at the origin of cystic fibrosis. The latter disease is characterized, among other symptoms, by a defective management of infection and inflammation in the airways. Short exposure to the proinflammatory cytokine TNF-α targets mutated CFTR to the plasma membrane and increases its chloride channel activity. The results hereby presented show a substantial modification of the lipid raft proteome in the same conditions, and may enlighten the effect of this cytokine and the role of CFTR in the cell response to inflammation.


Asunto(s)
Fibrosis Quística/patología , Microdominios de Membrana/química , Proteoma/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Bronquios , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales , Células HeLa , Humanos , Inflamación , Mutación , Proteoma/análisis , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA