Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Inflamm Bowel Dis ; 30(Supplement_2): S30-S38, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778625

RESUMEN

Novel technology is one of the five focus areas of the Challenges in Inflammatory Bowel Disease (IBD) Research 2024 document. Building off the Challenges in IBD Research 2019 document, the Foundation aims to provide a comprehensive overview of current gaps in IBD research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of a multidisciplinary collaboration from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. Specifically, the Novel Technologies section focuses on addressing key research gaps to enable interception and improve remission rates in IBD. This includes testing predictions of disease onset and progression, developing novel technologies tailored to specific phenotypes, and facilitating collaborative translation of science into diagnostics, devices, and therapeutics. Proposed priority actions outlined in the document include real-time measurement of biological changes preceding disease onset, more effective quantification of fibrosis, exploration of technologies for local treatment of fistulas, and the development of drug delivery platforms for precise, location-restricted therapies. Additionally, there is a strong emphasis on fostering collaboration between various stakeholders to accelerate progress in IBD research and treatment. Addressing these research gaps necessitates the exploration and implementation of bio-engineered novel technologies spanning a spectrum from materials to systems. By harnessing innovative ideas and technologies, there's a collective effort to enhance patient care and outcomes for individuals affected by IBD.


Technology drives medical progress, solving clinical challenges and enhancing patient care in inflammatory bowel disease (IBD). Collaborative efforts focus on addressing research gaps to improve interception, restoration, and remission rates, utilizing innovative technologies for better patient outcomes.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/terapia , Investigación Biomédica/métodos
2.
ACS Infect Dis ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712884

RESUMEN

This study presented the detection and quantification of capsular polysaccharide (CPS) as a biomarker for the diagnosis of melioidosis. After successfully screening four monoclonal antibodies (mAbs) previously determined to bind CPS molecules, the team developed a portable electrochemical immunosensor based on antibody-antigen interactions. The biosensor was able to detect CPS with a wide detection range from 0.1pg/mL to 1 µg/mL. The developed biosensor achieved high sensitivity for the detection of CPS spiked into both urine and serum. The developed assay platform was successfully programmed into a Windows app, and the sensor performance was evaluated with different spiked concentrations. The rapid electro-analytical device (READ) sensor showed great unprecedented sensitivity for the detection of CPS molecules in both serum and urine, and results were cross-validated with ELISA methods.

3.
Inflamm Bowel Dis ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520737

RESUMEN

BACKGROUND: Wearable sensor devices represent a noninvasive technology to continuously track biomarkers linked to inflammatory bowel disease (IBD). We assessed the inflammatory markers associated with IBD in human perspiration. METHODS: Participants with IBD were monitored for 40 to 130 minutes with a proprietary wearable sensor device used to measure C-reactive protein, interleukin-6, and calprotectin. Sensor response using electrochemical impedance spectroscopy and serum samples were measured on the same day. The Mann-Whitney test was used to analyze the relationship between active and remission IBD in serum and perspiration, classified according to endoscopic reports and serum biomarker levels. Asynchronously collected fecal calprotectin from a subset of the population was similarly analyzed. RESULTS: A total of 33 subjects were enrolled. Expression of calprotectin was significantly elevated in the active cohort compared with the remission cohort in perspiration (P < .05; median = 906.69 ng/mL; active 95% confidence interval [CI], 466.0-1833 ng/mL; remission 95% CI, 328.4-950.8 ng/mL), serum (median = 1860.82 ng/mL; active 95% CI, 1705-2985 ng/mL; remission 95% CI, 870.2-1786 ng/mL), and stool (P < .05; median = 126.74 µg/g; active 95% CI, 77.08-347.1 µg/g; remission 95% CI, 5.038-190.4 µg/g). Expression of CRP in perspiration and serum was comparable between the active and remission cohorts (perspiration: P > .05; median = 970.83 pg/mL; active 95% CI, 908.7-992 pg/mL; remission 95% CI, 903.3-991.9 pg/mL; serum: median = 2.34 µg/mL; active 95% CI, 1.267-4.492 µg/mL; remission 95% CI, 1.648-4.287 µg/mL). Expression of interleukin-6 in perspiration was nonsignificant in the active cohort compared with the remission cohort and was significantly elevated in serum (perspiration: P < .05; median = 2.13 pg/mL; active 95% CI, 2.124-2.44 pg/mL; remission 95% CI, 1.661-2.451 pg/mL; serum: median = 1.15 pg/mL; active 95% CI, 1.549-3.964 pg/mL; remission 95% CI, 0.4301-1.257 pg/mL). Analysis of the linear relationship between perspiration and serum calprotectin (R2 = 0.7195), C-reactive protein (R2 = 0.615), and interleukin-6 (R2 = 0.5411) demonstrated a strong to moderate relationship across mediums. CONCLUSIONS: We demonstrate the clinical utility of perspiration as a noninvasive medium for continuous measurement of inflammatory markers in IBD and find that the measures correlate with serum and stool markers across a range of disease activity.


This work establishes the clinical utility of perspiration as a noninvasive, continuous marker for gut inflammation and demonstrates the ability to distinguish between active and inactive inflammatory bowel disease across perspiration, serum, and stool.

4.
Mikrochim Acta ; 191(3): 146, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372811

RESUMEN

Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform's precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.


Asunto(s)
Agua Potable , Óxido de Zinc , Reproducibilidad de los Resultados , Oro , Salmonella
5.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400311

RESUMEN

Soil is a vital component of the ecosystem that drives the holistic homeostasis of the environment. Directly, soil quality and health by means of sufficient levels of soil nutrients are required for sustainable agricultural practices for ideal crop yield. Among these groups of nutrients, soil carbon is a factor which has a dominating effect on greenhouse carbon phenomena and thereby the climate change rate and its influence on the planet. It influences the fertility of soil and other conditions like enriched nutrient cycling and water retention that forms the basis for modern 'regenerative agriculture'. Implementation of soil sensors would be fundamentally beneficial to characterize the soil parameters in a local as well as global environmental impact standpoint, and electrochemistry as a transduction mode is very apt due to its feasibility and ease of applicability. Organic Matter present in soil (SOM) changes the electroanalytical behavior of moieties present that are carbon-derived. Hence, an electrochemical-based 'bottom-up' approach is evaluated in this study to track soil organic carbon (SOC). As part of this setup, soil as a solid-phase electrolyte as in a standard electrochemical cell and electrode probes functionalized with correlated ionic species on top of the metalized electrodes are utilized. The surficial interface is biased using a square pulsed charge, thereby studying the effect of the polar current as a function of the SOC profile. The sensor formulation composite used is such that materials have higher capacity to interact with organic carbon pools in soil. The proposed sensor platform is then compared against the standard combustion method for SOC analysis and its merit is evaluated as a potential in situ, on-demand electrochemical soil analysis platform.

6.
Sci Rep ; 14(1): 2833, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310197

RESUMEN

Wearable devices can non-invasively monitor patients with chronic diseases. Sweat is an easily accessible biofluid for continuous sampling of analytes, including inflammatory markers and cytokines. We evaluated a sweat sensing wearable device in subjects with and without inflammatory bowel disease (IBD), a chronic inflammatory condition of the gastrointestinal tract. Participants with an IBD related hospital admission and a C-reactive protein level above 5 mg/L wore a sweat sensing wearable device for up to 5 days. Tumor necrosis factor-alpha (TNF-α) levels were continually assessed in the sweat via the sensor, and daily in the blood. A second cohort of healthy subjects without chronic diseases wore the device for up to 48 h. Twenty-eight subjects were enrolled. In the 16 subjects with IBD, a moderate linear relationship between serum and sweat TNF-α levels was observed (R2 = 0.72). Subjects with IBD were found to have a mean sweat TNF-α level of 2.11 pg/mL, compared to a mean value of 0.19 pg/mL in 12 healthy controls (p < 0.0001). Sweat TNF-α measurements differentiated subjects with active IBD from healthy subjects with an AUC of 0.962 (95% CI 0.894-1.000). A sweat sensing wearable device can longitudinally measure key sweat-based markers of IBD. TNF-α levels in the sweat of subjects with IBD correlate with serum values, suggesting feasibility in non-invasive disease monitoring.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Dispositivos Electrónicos Vestibles , Humanos , Factor de Necrosis Tumoral alfa , Sudor , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedad Crónica
7.
Artículo en Inglés | MEDLINE | ID: mdl-38317723

RESUMEN

There are limitations to monitoring modalities for chronic inflammatory conditions, including inflammatory bowel disease (IBD). Wearable devices are scalable mobile health technology that present an opportunity to monitor markers that have been linked to worsening, chronic inflammatory conditions and enable remote monitoring. In this research article, we evaluate and demonstrate a proof-of-concept wearable device to longitudinally monitor inflammatory and immune markers linked to IBD disease activity in sweat compared to expression in serum. Sixteen participants with an IBD-related hospital admission and a C-reactive protein (CRP) > 5 µg/mL were followed for up to 5 days. The sweat sensing device also known as IBD AWARE was worn to continuously measure CRP and interleukin-6 (IL-6) in the sweat of participants via electrochemical impedance spectroscopy. Serum samples were collected daily. A linear relationship between serum and sweat readings for CRP and IL-6 was demonstrated based on individual linear correlation coefficients. Pooled CRP and IL-6 serum-to-sweat ratios demonstrated improving correlation coefficients as serum cutoffs decreased. Between the first and last day of observation, significant and non-significant trends in serum CRP and IL-6 were observed in the sweat. Comparison of sweat measurements between the subjects with active IBD and 10 healthy subjects distinguished an inflamed and uninflamed state with an AUC of 0.85 (95% CI: 0.68-1.00) and a sensitivity and specificity of 82% and 70% at a CRP cutoff of 938.9 pg/mL. IBD AWARE wearable device holds promise in longitudinally monitoring individuals with IBD and other inflammatory diseases.

8.
Analyst ; 149(2): 582, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38164701

RESUMEN

Correction for 'CannibiSenS: an on-demand rapid screen for THC in human saliva' by Nathan Kodjo Mintah Churcher et al., Analyst, 2023, 148, 2921-2931, https://doi.org/10.1039/D3AN00522D.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37356818

RESUMEN

Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat-based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real-time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra-low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat-based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Sudor/química , Sudor/metabolismo , Biomarcadores/análisis
10.
ACS Appl Mater Interfaces ; 16(1): 190-200, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153905

RESUMEN

Opioids are considered to be a global threat, and we are facing the worst opioid crisis of the decade. Synthetic opioids like fentanyl are highly potent and deadly toward human body, and hence its detection is an inevitable requirement globally. Naloxone is known for its antagonist property toward fentanyl, and we performed computational simulations to find their interactions and use this principle to build the first of a kind impedimetric sensor device, transduced by 3D-ZIF-8 with in situ encapsulated naloxone-gold nanoparticles. The probe is synthesized using a unique encapsulation strategy, thoroughly characterized by various physicochemical and microscopic tools. The sensor is highly selective toward fentanyl and can detect fentanyl up to 100 ppm in a synthetic sample. A prototype device is also built based on the synthetic calibration and applied to the spiked urine sample, and the performance is evaluated using statistical and machine learning tools.


Asunto(s)
Nanopartículas del Metal , Naloxona , Humanos , Fentanilo , Oro/química , Nanopartículas del Metal/química , Analgésicos Opioides
11.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138308

RESUMEN

Advances in the field of nanobiotechnology are largely due to discoveries in the field of materials. Recent developments in the field of electrochemical biosensors based on transition metal nanomaterials as transducer elements have been beneficial as they possess various functionalities that increase surface area and provide well-defined active sites to accommodate elements for rapid detection of biomolecules. In recent years, transition metal dichalcogenides (TMDs) have become the focus of interest in various applications due to their considerable physical, chemical, electronic, and optical properties. It is worth noting that their unique properties can be modulated by defect engineering and morphology control. The resulting multifunctional TMD surfaces have been explored as potential capture probes for the rapid and selective detection of biomolecules. In this review, our primary focus is to delve into the synthesis, properties, design, and development of electrochemical biosensors that are based on transition metal dichalcogenides (TMDs) for the detection of biomolecules. We aim to explore the potential of TMD-based electrochemical biosensors, identify the challenges that need to be overcome, and highlight the opportunities for further future development.

12.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38138357

RESUMEN

We present a first-of-its-kind electrochemical sensor that demonstrates direct real-time continuous soil pH measurement without any soil pre-treatment. The sensor functionality, performance, and in-soil dynamics have been reported. The sensor coating is a composite matrix of alizarin and Nafion applied by drop casting onto the working electrode. Electrochemical impedance spectroscopy (EIS) and squarewave voltammetry (SWV) studies were conducted to demonstrate the functionality of each method in accurately detecting soil pH. The studies were conducted on three different soil textures (clay, sandy loam, and loamy clay) to cover the range of the soil texture triangle. Squarewave voltammetry showed pH-dependent responses regardless of soil texture (while electrochemical impedance spectroscopy's pH detection range was limited and dependent on soil texture). The linear models showed a sensitivity range from -50 mV/pH up to -66 mV/pH with R2 > 0.97 for the various soil textures in the pH range 3-9. The validation of the sensor showed less than a 10% error rate between the measured pH and reference pH for multiple different soil textures including ones that were not used in the calibration of the sensor. A 7-day in situ soil study showed the capability of the sensor to measure soil pH in a temporally dynamic manner with an error rate of less than 10%. The test was conducted using acidic and alkaline soils with pH values of 5.05 and 8.36, respectively.

13.
J Agric Food Chem ; 71(43): 15954-15962, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819200

RESUMEN

A modified three-electrode system was utilized with a correlated ion-capture film that is functional to changes in soil carbonate moieties to determine an understudied pool of soil carbon that is vital toward holistic carbon sequestration─carbonous soil minerals (CSM). This composite sensor was tested on soils with varying carbonate contents using cyclic voltammetry, chromatocoulometry (DC-based), and electrochemical impedance spectroscopy to determine signal output as a function of increasing dose. To determine the in-field capability, a portable potentiostat device was integrated into a probe head setup that could be inserted into soil for testing. The results from these experiments showed a linearity of R2 > 0.97 and a measurable sensing range from 0.01% (100 ppm) to 1% (10 000 ppm). Therefore, a first-of-a-kind in-soil sensor system was developed for determining carbonate content in real soil samples using electrochemistry that can be tested in-field to survey the field-deployable and point-of-use capability of the system.


Asunto(s)
Carbono , Suelo , Carbono/química , Suelo/química , Carbonatos , Minerales , Técnicas Electroquímicas/métodos , Electrodos
14.
Int J Biol Macromol ; 253(Pt 3): 126894, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709225

RESUMEN

Personalized medicine has emerged as an increasingly efficient and effective approach to addressing disease diagnosis and intervention. Ammonia is a waste product produced by the body during the digestion of protein. The requirement to develop an electrochemical sensing platform for monitoring skin ammonia levels holds great potential as an essential solution to pre-screen chronic kidney disease (CKD). In this research, we have manufactured an innovative electrochemical sensor by employing activated carbon derived from wood biochar as the signal transducer. We conducted a comprehensive analysis of the structural and morphological characteristics of the synthesized materials using various techniques. The hypothesized interaction was investigated using chronoamperometry as a transduction technique. To assess cross-reactivity, we conducted a study using common interferants or chemicals present in the environment. The data presented in this paper represents three replicates and is plotted with a 5 % error bar, demonstrating a 95 % confidence interval in the sensor response. In this study, we have elucidated the functionality and usefulness of a wearable microelectronic research prototype integrated with an HTC-activated carbon @RTIL-based electrochemical sensing platform for detecting ammonia levels released from the skin as a marker for chronic kidney disease screening. By enabling early detection and monitoring, these platforms can facilitate timely interventions, such as lifestyle modifications, medication adjustments, or referral to nephrology specialists. This proactive approach can potentially slow down disease progression, minimize the need for dialysis or transplantation, and ultimately improve the quality of life for CKD patients.


Asunto(s)
Amoníaco , Insuficiencia Renal Crónica , Humanos , Carbón Orgánico , Calidad de Vida , Madera , Diálisis Renal , Insuficiencia Renal Crónica/diagnóstico
15.
Sci Rep ; 13(1): 14942, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696978

RESUMEN

In this work, we discuss the development of H.O.S.T., a novel hemoglobin microbubble-based electrochemical biosensor for label-free detection of Hydrogen peroxide (H2O2) towards oxidative stress and cancer diagnostic applications. The novelty of the constructed sensor lies in the use of a sonochemically prepared hemoglobin microbubble capture probe, which allowed for an extended dynamic range, lower detection limit, and enhanced resolution compared to the native hemoglobin based H2O2 biosensors. The size of the prepared particles Hemoglobin microbubbles was characterized using Coulter Counter analysis and was found to be 4.4 microns, and the morphology of these spherical microbubbles was shown using Brightfield microscopy. The binding chemistry of the sensor stack elements of HbMbs' and P.A.N.H.S. crosslinker was characterized using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and UV-Vis Spectroscopy. The electrochemical biosensor calibration (R2 > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The electrochemical biosensor calibration (R2 > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The specificity of the sensor for H2O2 was analyzed using cross-reactivity studies using ascorbic acid and glucose as interferents (p < 0.0001 for the highest non-specific dose versus the lowest specific dose). The developed sensor showed good agreement in performance with a commercially available kit for H2O2 detection using Bland Altman Analysis (mean bias = 0.37 for E.I.S. and - 24.26 for CV). The diagnostic potential of the biosensor was further tested in cancerous (N.G.P.) and non-cancerous (H.E.K.) cell lysate for H2O2 detection (p = 0.0064 for E.I.S. and p = 0.0062 for CV). The Michaelis Menten constant calculated from the linear portion of the sensor was found to be [Formula: see text] of 19.44 µM indicating that our biosensor has a higher affinity to Hydrogen peroxide than other available enzymatic sensors, it is attributed to the unique design of the hemoglobin polymers in microbubble.


Asunto(s)
Peróxido de Hidrógeno , Microburbujas , Hemoglobinas , Estrés Oxidativo , Tecnología
16.
Bioeng Transl Med ; 8(5): e10566, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693054

RESUMEN

With the evolution of the COVID-19 pandemic, there is now a need for point-of-care devices for the quantification of disease biomarkers toward disease severity assessment. Disease progression has been determined as a multifactor phenomenon and can be treated based on the host immune response within each individual. CoST is an electrochemical immunosensor point-of-care device that can determine disease severity through multiplex measurement and quantification of spike protein, nucleocapsid protein, D-dimer, and IL-2R from 100 µL of plasma samples within a few minutes. The limit of detection was found to be 3 ng/mL and 21 ng/mL for S and N proteins whereas for D-dimer and IL-2R it was 0.0006 ng/mL and 0.242 ng/mL, respectively. Cross-reactivity of all the biomarkers was studied and it was found to be <20%. Inter and intra-assay variability of the CoST sensor was less than <15% confirming its ability to detect the target biomarker in body fluids. In addition, this platform has also been tested to quantify all four biomarkers in 40 patient samples and to predict the severity index. A significant difference was observed between healthy and COVID-19 samples with a p-value of 0.0002 for D-dimer and <0.0001 for other proteins confirming the ability of the COST sensor to be used as a point of care device to assess disease severity at clinical sites. This device platform can be modified to impact a wide range of disease indications where prognostic monitoring of the host response can be critical in modulating therapy.

17.
ACS Sens ; 8(9): 3408-3416, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37643348

RESUMEN

Exhaled breath condensate is an emerging source of inflammatory biomarkers suitable for the noninvasive detection of respiratory disorders. Current gold standard methods are highly invasive and pose challenges in sample collection during airway inflammation monitoring. Cytokine biomarkers are detectable in EBC at increased or decreased concentrations. IL-6, IL-1ß, IL-8, and hs-CRP are characteristic biomarkers identified in respiratory disorders. We have demonstrated the promising outcomes of a 16-plexed electrochemical platform - READ 2.0 for the multiplexed detection of characteristic biomarkers in EBC. The sensor demonstrates dynamic ranges of 1-243 pg/mL with a lower detection limit of 1 pg/mL for IL-6 and IL-1ß, while the detection range and limit of detection for IL-8 and hs-CRP is 1-150 pg/mL and 3 pg/mL, respectively. The detection accuracies for the biomarkers are in the range of ∼85 ± 15% to ∼100 ± 10%. The sensor shows a nonspecific response to similar cross-reacting biomarkers. Analytical validation of the sensor with ELISA as the standard reference generated a correlation of R2 > 0.96 and mean biases of 10.9, 3.5, 17.4, and 3.9 pg/mL between the two methods for IL-6, IL-1ß, IL-8, and hs-CRP, respectively. The precision of the sensor in detecting low biomarker concentrations yields a %CV of <7%. The variation in the sensor's response on repeat EBC sample measurements and within a 6 h duration is less than 10%. The READ 2.0 platform shows a promise that EBC-based biomarker detection can prove to be vital in predicting the severity and survival rates of respiratory disorders and serve as a reference point for monitoring EBC-based biomarkers.


Asunto(s)
Proteína C-Reactiva , Interleucina-6 , Interleucina-8 , Citocinas , Ensayo de Inmunoadsorción Enzimática
18.
ACS Sens ; 8(9): 3307-3319, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37540230

RESUMEN

With the expansion of the Internet-of-Things (IoT), the use of gas sensors in the field of wearable technology, smart devices, and smart homes has increased manifold. These gas sensors have two key applications─one is the detection of gases present in the environment and the other is the detection of Volatile Organic Compounds (VOCs) that are found in the breath. In this review, we focus systematically on the advancements in the field of various spectroscopic methods such as mass spectrometry-based analysis and point-of-care approach to detect VOCs and gases for environmental monitoring and disease diagnosis. Additionally, we highlight the development of smart sensors that work on the principle of electrochemical detection and provide examples of the same through an extensive literature review. At the end of this review, we highlight various challenges and future perspectives.


Asunto(s)
Líquidos Corporales , Compuestos Orgánicos Volátiles , Dispositivos Electrónicos Vestibles , Gases/análisis , Líquidos Corporales/química , Compuestos Orgánicos Volátiles/análisis , Espectrometría de Masas
19.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37512625

RESUMEN

Sustainable agriculture is the answer to the rapid rise in food demand which is straining our soil, leading to desertification, food insecurity, and ecosystem imbalance. Sustainable agriculture revolves around having real-time soil health information to allow farmers to make the correct decisions. We present an ion-selective electrode (ISE) electrochemical soil nitrate sensor that utilizes electrochemical impedance spectroscopy (EIS) for direct real-time continuous soil nitrate measurement without any soil pretreatment. The sensor functionality, performance, and in-soil dynamics have been reported. The ion-selective electrode (ISE) is applied by drop casting onto the working electrode. The study was conducted on three different soil textures (clay, sandy loam, and loamy clay) to cover the range of the soil texture triangle. The non-linear regression models showed a nitrate-dependent response with R2 > 0.97 for the various soil textures in the nitrate range of 5-512 ppm. The validation of the sensor showed an error rate of less than 20% between the measured nitrate and reference nitrate for multiple different soil textures, including ones that were not used in the calibration of the sensor. A 7-day-long in situ soil study showed the capability of the sensor to measure soil nitrate in a temporally dynamic manner with an error rate of less than 20%.

20.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37514996

RESUMEN

Vaccination is critical to minimize serious illness and death from COVID-19. Yet uptake of COVID-19 vaccines remains highly variable, particularly among marginalized communities. This article shares lessons learned from four UNICEF interventions that supported Governments to generate acceptance and demand for COVID-19 vaccines in Zambia, Iraq, Ghana, and India. In Zambia, community rapid assessment provided invaluable real-time insights around COVID-19 vaccination and allowed the identification of population segments that share beliefs and motivations regarding COVID-19 vaccination. Findings were subsequently used to develop recommendations tailored to the different personas. In Iraq, a new outreach approach (3iS: Intensification of Integrated Immunization) utilized direct community engagement to deliver health messages and encourage service uptake, resulting in over 4.4 million doses of COVID-19 and routine immunization vaccines delivered in just 8 months. In Ghana, a human-centered design initiative was applied to co-develop community-informed strategies to improve COVID-19 vaccination rates. In India, a risk communication and community engagement initiative reached half a million people over six months, translating into a 25% increase in vaccination rates. These shared approaches can be leveraged to improve COVID-19 vaccination coverage and close gaps in routine immunization across diverse and marginalized communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...