Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Intervalo de año de publicación
1.
Curr Res Microb Sci ; 6: 100236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756233

RESUMEN

Plants have a microbiome, a diverse community of microorganisms, including bacteria, fungi, and viruses, living inside and on their tissues. Versatile endophytic microorganisms inhabited in every plant part without causing disease and develop endophytic microbiome or endo-microbiome. Plant endo-microbiome are drawn by the nutrient rich micro-environment, and in turn some microbes mutualistically endorse and protect plant from adverse environmental stresses. Plant endo-microbiome interact within well-designed host equilibrium containing xylem, phloem, nutrients, phytohormones, metabolites and shift according to environmental and nutritional change. Plant endo-microbiome regulate and respond to environmental variations, pathogens, herbivores by producing stress regulators, organic acids, secondary metabolites, stress hormones as well as unknown substances and signalling molecules. Endomicrobiome efficiently synthesizes multiple bioactive compounds, stress phytohormones with high competence. The technological innovation as next generation genomics biology and high-throughput multiomics techniques stepping stones on the illumination of critical endo-microbiome communities and functional characterization that aid in improving plant physiology, biochemistry and immunity interplay for best crop productivity. This review article contains deeper insight in endomicrobiome related research work in last years, recruitment, niche development, nutrient dynamics, stress removal mechanisms, bioactive services in plant health development, community architecture and communication, and immunity interplay in producing stress resilient future crop.

2.
J Plant Res ; 137(3): 521-543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460108

RESUMEN

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Asunto(s)
Sulfuro de Hidrógeno , Níquel , Óxido Nítrico , Nitrógeno , Oryza , Óxido Nítrico/metabolismo , Níquel/metabolismo , Sulfuro de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Nostoc muscorum/metabolismo , Polisacáridos Bacterianos/metabolismo , Anabaena/metabolismo , Anabaena/efectos de los fármacos , Anabaena/crecimiento & desarrollo , Estrés Fisiológico , Nitroprusiato/farmacología
3.
Environ Res ; 232: 116292, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276972

RESUMEN

Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.


Asunto(s)
Nanopartículas , Silicio , Nanopartículas/química , Agricultura , Nanotecnología , Plantas
4.
Mol Biotechnol ; 2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37087717

RESUMEN

Plant growth promoting endophytes significantly affected plant health. The present study demonstrates effect of endophytic isolate Bacillus subtilis strain SSA4 and exogenous Indole-3-acetic acid (IAA) on paddy seedlings growth parameters, photosynthetic pigments, photosynthesis, leaf gas exchange parameters, respiration, oxidative stress biomarkers and Ascorbate-Glutathione (AsA-GSH) cycle under different NaCl (0-300 mM) stresses. The Bacillus subtilis SSA4 was identified by 16S r-RNA gene sequence analyses and NCBI BLASTn tools. The B. subtilis SSA4 tolerated 1100 mM NaCl and produced IAA (42.15 µg m/L) at 300 mM NaCl stress. The paddy genotype (HUR 917) treated with exogenous IAA (21 µg m/L) and B. subtilis strain SSA4 egg cell based bioformulation was significantly affected seedlings physiology and biochemistry at lower (150 mM) and higher (300 mM) NaCl doses. In conclusion, co-inoculation found as effective green tool to mitigating salinity stress in paddy seedlings.

5.
Environ Sci Pollut Res Int ; 30(21): 59891-59908, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37016262

RESUMEN

This field study was done to study the effects of pesticides chlorpyrifos and dimethoate singly and in combination with soil amendments like chemical fertilizer (CF), farmyard manure (FM), and 50% CF + 50% FM (CM) on various indices of growth, physio-biochemical parameters of brinjal, and their residual effect in tomato seedlings. As compared to the control, the decrease of 9.5 and 5.5%, 8.9 and 5.0% in fresh weight, dry weight respectively was recorded in the pesticide-only treatment in the brinjal crop. Pesticides when applied in combination with soil amendments depicted the highest growth of 105.4 and 118.2%, 104.1 and 115.1% in pesticides + CF treatment, 72.7 and 85.1%, 68.1 and 78.1% in pesticides + CM treatment, and 64.4 and 74.0%, 62.7 and 65.7% in pesticides + FM treatment compared to control. In tomato seedlings, the pesticides + CF treatment exhibited the lowest growth indices (25.5 and 31.9%, 26.4 and 28.8%) across the combined treatments while pesticide-only treatment depicted minimum growth compared to the control. In the case of photosynthesis rate and antioxidant activity, the combined treatments showed the trend as pesticides + CF > pesticides + CM > pesticides + FM in the brinjal crop; however, the trend became somewhat reversed in the tomato crop. The results indicated that soil-amended practices modulated pesticide-induced damage by upregulating photosynthetic performance, chlorophyll a fluorescence, and antioxidant balancing which might be associated with the mitigation of ROS-induced pesticide toxicity, and the effect was more pronounced with CM. Furthermore, our study was supported by non-metric-multidimensional scaling (NMDS)-constructed ordination plots by showing spatial patterns in different variables. The study might help in taking management decision to design mitigation actions for government and non-government agency at the farmers' level.


Asunto(s)
Cloropirifos , Plaguicidas , Solanum lycopersicum , Solanum melongena , Toxinas Biológicas , Plaguicidas/farmacología , Cloropirifos/farmacología , Dimetoato , Plantones , Suelo , Clorofila A , Antioxidantes/farmacología
6.
Physiol Mol Biol Plants ; 29(1): 51-68, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36733835

RESUMEN

The present study explores the possible function of gibberellic acid (GA: 20 µM) in reducing salt (NaCl) induced toxicity in two diazo-trophic cyanobacteria i.e. Nostoc muscorum and Phormidium foveolarum. The physiological and biochemical parameters viz. growth, photosynthetic pigments (chlorophyll a, carotenoids, and phycocyanin), photosynthetic and respiratory rates, oxidative stress biomarkers (superoxide radicle, hydrogen peroxide, and malondialdehyde contents) antioxidant activities (superoxide dismutase, peroxidase, catalase, and glutathione-S-transferase) and non-enzymatic antioxidants were studied under both the doses i.e. 40 mM (LC 10) and  mM (LC 30) of NaCl. The growth, photosynthetic pigments and photosynthetic rate were found to be declined under concentration-dependent manner of NaCl. Contrastingly, the respiratory rate, oxidative stress biomarkers, and the activity of antioxidant enzymes i.e. superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), and glutathione-S-transferase (GST) together with contents of non-enzymatic antioxidants (proline and cysteine) were found to increase in the test cyanobacteria. PSII photochemistry in both the cyanobacteria was negatively affected showing an inhibitory effect of NaCl on JIP parameters, while an enhancement effect was noticed in the values related to energy flux parameters. Further, the addition of GA to the growth medium caused an alleviating effect as it completely mitigated NaCl toxicity induced by a lower dose i.e. 40 mM of NaCl, while it partially alleviated the growth and photosynthetic parameters of 80 mM NaCl stressed cyanobacteria. Supplementation of GA significantly reduced the contents of oxidative stress tested cyanobacteria due to an improved antioxidant system (increased activities of enzymatic and non-enzymatic antioxidants) as evident from the biochemical analysis. In brief, our findings reflect the possible role of GA as a potential modulator of salt toxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01266-5.

7.
Ecotoxicology ; 31(6): 933-947, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35622200

RESUMEN

The current study explored the role of ionic copper (CuCl2; 0.2 µM and 1 µM) and synthesized copper nanoparticles (CuNPs; 0.2 mM and 1 mM) in the two paddy field cyanobacteria (Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120) with respect to growth, photosynthetic pigments, photosynthetic efficiency (O2 evolution and photochemistry of photosystem II; PS II), oxidative stress biomarkers, and antioxidant system. The low doses of ionic Cu (0.2 µM) and CuNPs (0.2 mM) showed stimulating effects on growth, pigment content (chlorophyll a, phycobiliproteins, and carotenoids), oxygen evolution, and PS II photochemistry. High doses of Cu/CuNPs (1 µM Cu and 1 mM CuNPs) caused a decline in the above-mentioned parameters. The values of fluorescence kinetics parameters: ϕP0, FV/F0, ϕE0, Ψ0, and PIABS, except for F0/FV, associated with PS II photochemistry in tested cyanobacteria and subjected to the high doses of ionic Cu and CuNPs, were decreased, while energy fluxes, ABS/RC, TR0/RC, ET0/RC, and DI0/RC, were increased. Conversely, treatment with low doses of Cu and CuNPs caused a reverse trend, indicating normalization of PS II performance. Although the activity of enzymatic antioxidants (superoxide dismutase SOD; peroxidase POD; catalase CAT and glutathione-S-transferase GST) in both cyanobacteria exposed to high doses of ionic Cu and CuNPs was accelerated considerably, the oxidative stress remained high. Conversely, at low doses of ionic Cu and CuNPs, a significant enhancement in the activities of enzymatic antioxidants decreased the levels of oxidative stress biomarkers. Nevertheless, in Anabaena sp., the levels of biomarkers were greater than those of the control. The current study concluded that compared to synthesized CuNPs, ionic Cu at elevated concentration had a damaging effect on growth, photosynthetic pigments, and PS II photochemistry via increased oxidative stress, and this effect was enhanced in Anabaena sp. than N. muscorum.


Asunto(s)
Cianobacterias , Nanopartículas , Antioxidantes/metabolismo , Biomarcadores , Clorofila , Clorofila A/farmacología , Cobre/toxicidad , Fluorescencia , Estrés Oxidativo , Especies Reactivas de Oxígeno
8.
Environ Pollut ; 307: 119509, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35609844

RESUMEN

The role of hydrogen sulfide (H2S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H2S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H2S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H2S further caused enhancement in sulfur assimilation, suggesting its role in the H2S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H2S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.


Asunto(s)
Sulfuro de Hidrógeno , Oryza , Cromo/metabolismo , Cromo/toxicidad , Productos Agrícolas/metabolismo , Glutatión/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/toxicidad , Oryza/metabolismo , Plantones/metabolismo , Azufre/farmacología , Triticum/metabolismo
9.
Physiol Plant ; 174(5): e13065, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31916585

RESUMEN

The individual impact of silicon (Si) and nitric oxide (NO, as sodium nitroprusside) on metal toxicity in various plant species has been well documented; however, their combined action in the regulation of metal stress has never been tested yet. Therefore, this study investigates the effects of the combined application of Si and NO in the mitigation of Cd toxicity in wheat seedlings. Seedlings grown on Cd has a significantly declined growth due to an increased accumulation of Cd and oxidative stress markers (due to downregulation of antioxidant defense system particularly ascorbate-glutathione cycle) and a decreased accumulation of NO and Si. Additionally, the altered leaf and root structures resulted into a declined photosynthetic efficiency. However, the addition of Si and NO alone as well as combined significantly alleviated Cd toxicity in wheat seedlings by lowering the accumulation of Cd and oxidative stress markers and improving leaf and root structures, which are collectively responsible for a better photosynthetic rate under Cd toxicity, and hence an improved growth was noticed. Particularly, the application of Si and NO in combination lowered the oxidative stress markers via upregulating the antioxidant defense system (particularly AsA-GSH cycle) suggesting the increased efficacy of Si + NO against the Cd toxicity in wheat seedlings as compared to their alone treatments.


Asunto(s)
Plantones , Triticum , Plantones/fisiología , Triticum/metabolismo , Silicio/farmacología , Cadmio/toxicidad , Antioxidantes/metabolismo , Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Estrés Oxidativo , Glutatión/metabolismo
10.
Environ Sci Pollut Res Int ; 29(10): 14418-14429, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34617220

RESUMEN

The toxic and non-essential metalloid arsenic (As) is ubiquitous in the environment with its absorption from the soil into the plants' roots posing detrimental effects on the crop plants and hence the food availability and food security are also threatened. The present study was intended to reduce the As-induced toxicity in rice seedlings (Oryza sativa L.) by phosphate (PO43-). For this, three concentrations of potassium phosphate (KH2PO4), 50, 100 and 150 µM were supplemented along with 50 µM As exposure to hydroponically grown 7-day-old rice seedlings. Supplementation of PO43- significantly recovered arsenic-induced diminutions in growth parameters and photosynthetic pigment contents which were due to the significant increase in superoxide radical (SOR, O2•¯) and hydrogen peroxide (H2O2). Supplementation of 50 µM PO43- could significantly increase the activity of APX (ascorbate peroxidase) and GR (glutathione reductase) while 100 µM PO43- could increase the activity of DHAR (dehydroascorbate reductase) and monodehydroascorbate reductase (MDHAR). As the amount of PO43- was increased, the ratio of AsA/DHA (reduced to oxidized ascorbate) and GSH/GSSG (reduced to oxidized glutathione) was increased significantly due to increase in the reduced form of the non-enzymes i.e. AsA and GSH. The activity of SOD (superoxide dismutase) and GPX (guaiacol peroxidase) decreased significantly after a substantive increase in their activities due to As stress while the CAT (catalase) activity further enhanced after the supplementation of 50 and 100 µM PO43-. Thus, the As-induced oxidative stress in the rice seedlings was managed by concerted modulations in the activities of SOD, GPX, CAT and AsA-GSH cycle enzymes and metabolites.


Asunto(s)
Arsénico , Oryza , Antioxidantes/metabolismo , Arsénico/toxicidad , Ácido Ascórbico , Suplementos Dietéticos , Glutatión/metabolismo , Peróxido de Hidrógeno , Oryza/metabolismo , Estrés Oxidativo , Fosfatos , Plantones/metabolismo
11.
Physiol Mol Biol Plants ; 27(10): 2181-2199, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744360

RESUMEN

In the present study, the potential role of hydrogen peroxide (H2O2) and nitric oxide (NO) has been well recorded in the induction of cadmium (Cd) stress tolerance in cyanobacteria. In this regard, H2O2 and SNP (sodium nitroprusside, NO donor), were applied to Nostoc muscorum and Anabaena sp. exposed to Cd (6 µM) stress, to analyze different physiological and biochemical parameters. Results revealed that treatment of Cd reduced the growth, pigment contents, photosynthetic oxygen yield and performance of PS II photochemistry (decreased chlorophyll a fluorescence parameters, i.e., ФPo, Ψo, ФEo, PIABS along with Fv/Fo and increased the energy flux parameters, i.e., ABS/RC, TRo/RC, ETo/RC, DIo/RC along with Fo/Fv. Similarly, uptake of nitrate (NO3 -) and nitrite (NO2 -), as well as the activities of nitrate and ammonia assimilating enzymes along with carbohydrate content, were severely affected by Cd toxicity and notwithstanding this, glutamate dehydrogenase (GDH) activity exhibited reverse trend. Exogenous application of a very low dose (1 µM) of H2O2 (only for 3 h) and NO (SNP; 10 µM) notably counteracted Cd-induced toxicity. Nevertheless, the positive impact of H2O2 got reversed under the treatment of PTIO (NO scavenger) and LNAME (inhibitor of nitric oxide synthase; NOS) while NO could work efficiently even in the presence of NAC (H2O2 scavenger) and DPI (inhibitor of NADPH oxidase); hence indicated towards the H2O2 mediated NO signaling in averting Cd induced toxicity in test cyanobacteria. In conclusion, current finding demonstrated a positive cross-talk between H2O2 and NO for providing tolerance to cyanobacteria against Cd stress.

12.
Plant Physiol Biochem ; 167: 713-722, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34500196

RESUMEN

The present study was aimed to investigate copper (Cu) toxicity alleviatory potential of silicon in Vigna radiata L. (mung bean) seedlings. Moreover, attention has also been paid to find out whether endogenous nitric oxide (NO) has any role in Si-governed alleviation of Cu stress. The length of root and shoot, fresh weight, and biochemical attributes were adversely affected by Cu exposure. However, application of Si rescued negative effects of Cu. Cu exposure decreased cell viability, and enhanced cell death and levels of oxidative stress markers (O2•‾, H2O2 and MDA), but Si significantly mitigated these effects of Cu. Application of Cu substantially stimulated the activities of superoxide dismutase and guaiacol peroxidase while inhibited activity of catalase. However, Si addition reversed this effect of Cu. Ascorbate and glutathione contents in roots and shoots were declined by Cu but stimulated by Si. Moreover, we noticed that addition of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and sodium tungstate (Tung) further augmented Cu toxicity but addition of sodium nitroprusside rescued adverse effects of L-NAME and Tung. Altogether, data suggest that though Si was able in alleviating Cu toxicity in mung bean seedlings but it requires endogenous nitric oxide.


Asunto(s)
Plantones , Vigna , Antioxidantes , Cobre/toxicidad , Peróxido de Hidrógeno , Óxido Nítrico , Estrés Oxidativo , Plantones/metabolismo , Silicio , Superóxido Dismutasa/metabolismo , Vigna/metabolismo
13.
Plant Physiol Biochem ; 167: 691-704, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34488154

RESUMEN

Nowadays, among several abiotic stresses, salt, especially NaCl and UV-B are of major concern. They lead to deleterious effects on plant growth and ultimately affect crop productivity. The present study was planned to find out some ameliorative solution against these stresses. Here, the modulatory action of two oxylipins, namely, methyl jasmonate (MeJA) and 12-Oxo-phytodienoic acid (OPDA) on growth, photosynthetic performance, nitrate/ammonia assimilating enzymes, and nutritive values of Luffa Mill. seedlings grown under NaCl (20 and 40 mM) and/or enhanced UV-B stresses (ambient: 8.2 kJ m-2 d-1 + additional: 2.2 kJ m-2 s-1) were analyzed. Both the stresses when given alone, negatively affected the fresh mass, root/shoot ratio, leaf area, photosynthetic pigments content, photosynthetic oxygen yield and, chlorophyll a fluorescence kinetic parameter. This decline was further aggravated upon combined exposure to the stressors. However, supplementation of MeJA/OPDA effectively counteracted the negative impact on important growth-regulating processes. The activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) enzymes, as well as the contents of inorganic nitrogen, protein, and carbohydrate, were increased with the supplementation of MeJA/OPDA. The increase in the Na+ and Cl‾ contents due to NaCl or/and UV-B was depreciated by MeJA or OPDA. Ameliorating behaviour of MeJA or OPDA is correlated with improved photosynthetic activity and nitrogen metabolism. These findings, point out that supplementation of MeJA/OPDA, particularly OPDA more favourably regulated the growth-promoting activities, which can be linked with the mitigation of NaCl and UV-B stress.


Asunto(s)
Luffa , Plantones , Clorofila A , Oxilipinas , Fotosíntesis , Hojas de la Planta , Cloruro de Sodio/farmacología
14.
Environ Pollut ; 290: 117968, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34523532

RESUMEN

Chromium toxicity to crops is a big scientific issue of the present time. Thus, continuous scientific attempts have been taken for reducing chromium toxicity in crop plants. In this study, we have tested potential of ethylene (ET) and hydrogen sulfide (H2S) in alleviating hexavalent chromium [(Cr(VI)] stress in two pulse crops i.e. black bean and mung bean. Cr(VI) declined growth (by 21 % and 27 % in black and mung bean, respectively) and also negatively affected photosynthesis in both pulse crops due to accumulation of Cr(VI) and cell death in roots. Under similar conditions, levels of reactive oxygen species (ROS) were enhanced but antioxidant defense system showed differential responses. The addition of AVG (an inhibitor of ethylene biosynthesis) and PAG (an inhibitor of H2S biosynthesis) with Cr(VI) further increased toxicity of Cr(VI) suggesting that endogenous H2S and ET are important for tolerating Cr(VI) toxicity. But supplementation of either ET or H2S alleviated Cr(VI) toxicity. Interestingly, ET did not rescue negative effects of PAG under Cr(VI) stress but NaHS rescued negative effect of AVG. Overall, results indicate that though both ET and H2S are able in alleviating Cr(VI) stress but endogenous H2S is crucial in ET-mediated mitigation of Cr(VI) stress. Furthermore, H2S appears to be a downstream signal of ET in alleviating Cr(VI) stress in two pulse crops.


Asunto(s)
Sulfuro de Hidrógeno , Vigna , Cromo/toxicidad , Etilenos
15.
PLoS One ; 16(6): e0249230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34157031

RESUMEN

Cytokinins (CKs) plays a key role in plant adaptation over a range of different stress conditions. Here, we analyze the effects of a cytokinin (i.e., kinetin, KN) on the growth, photosynthesis (rate of O2 evolution), PS II photochemistry and AsA-GSH cycle in Trigonella seedlings grown under cadmium (Cd) stress. Trigonella seeds were sown in soil amended with 0, 3 and 9 mg Cd kg-1 soil, and after 15 days resultant seedlings were sprayed with three doses of KN, i.e.,10 µM (low, KNL), 50 µM (medium, KNM) and 100 µM (high, KNH); subsequent experiments were performed after 15 days of KN application, i.e., 30 days after sowing. Cadmium toxicity induced oxidative damage as shown by decreased seedling growth and photosynthetic pigment production (Chl a, Chl b and Car), rates of O2-evolution, and photochemistry of PS II of Trigonella seedlings, all accompanied by an increase in H2O2 accumulation. Supplementation with doses of KN at KNL and KNM significantly improved the growth and photosynthetic activity by reducing H2O2 accumulation through the up-regulation AsA-GSH cycle. Notably, KNL and KNM doses stimulated the rate of enzyme activities of APX, GR and DHAR, involved in the AsA-GSH cycle thereby efficiently regulates the level of AsA and GSH in Trigonella grown under Cd stress. The study concludes that KN can mitigate the damaging effects of Cd stress on plant growth by maintaining the redox status (>ratios: AsA/DHA and GSH/GSSG) of cells through the regulation of AsA-GSH cycle at 10 and 50 µM KN under Cd stress conditions. At 100 µM KN, the down-regulation of AsA-GSH cycle did not support the growth and PS II activity of the test seedlings.


Asunto(s)
Cinetina/metabolismo , Estrés Fisiológico/fisiología , Trigonella/metabolismo , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo , Cadmio/efectos adversos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Cinetina/farmacología , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/fisiología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/fisiología , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Trigonella/crecimiento & desarrollo
16.
Environ Sci Pollut Res Int ; 28(37): 51088-51104, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33974205

RESUMEN

Exposure time, metal bio-accumulation, and upregulation of ascorbate-glutathione (AsA-GSH) cycle are the key factor that provide tolerance against heavy metal stress. Thus, the current study is an endeavor to prove our hypothesis that regulation of arsenate (AsV: 50, 100, and 150 mM) and arsenite (AsIII: 50, 100, and 150 µM) toxicity is time dependent (48-96 h) due to modulation in bio-accumulation pattern, AsA-GSH cycle, and non-enzymatic antioxidants in two paddy field cyanobacteria Nostoc muscorum ATCC27893 and Anabaena sp. PCC7120. After 48 h, reduction in growth associated with increased sensitivity index, As bio-accumulation, and oxidative stress was observed which further intensified after 96 h but the degree of damage was lesser than 48 h. It denotes a significant recovery in growth after 96 h which is correlated with decreased As bio-accumulation and oxidative stress due to increased efficiency of AsA-GSH cycle and non-enzymatic antioxidants. Both the species of As caused significant rise in oxidative biomarkers as evident by in -vitro analysis of O2·-, H2O2, and MDA equivalent contents despite appreciable rise in the activity antioxidative enzymes APX, DHAR, and GR. The study concludes that among both forms of arsenic, AsIII induced more toxic effect on growth by over-accumulating the ROS as evident by weak induction of AsA-GSH cycle to overcome the stress as compared to AsV. Further, with increasing the time exposure, apparent recovery was noticed with the lower doses of AsV, i.e., 50 and 100 mM and AsIII, i.e., 50 and 100 µM; however, the toxicity further aggravated with higher dose of both AsV and AsIII. Study proposes the deleterious impact of AsV and AsIII on cyanobacteria N. muscorum and Anabaena sp. but the toxicity was overcome by time-dependent recovery.


Asunto(s)
Anabaena , Arsenitos , Cianobacterias , Nostoc muscorum , Anabaena/metabolismo , Antioxidantes , Arseniatos/toxicidad , Arsenitos/toxicidad , Cianobacterias/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno , Nostoc muscorum/metabolismo , Estrés Oxidativo
17.
Plant Physiol Biochem ; 164: 173-184, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33993067

RESUMEN

In the present study, the role of hydrogen sulfide (H2S) in alleviating NaCl (20 mM) induced toxicity on growth, photosynthetic pigments and photochemistry of PS II, and impact on oxidative stress and antioxidant systems of eggplant and tomato was studied. To confirm the role of H2S (donor sodium hydrogen sulphide (NaHS; 40 µM)) under stress, H2S scavenger; hypotaurine (HT; 200 µM) and inhibitor, propargylglycine (PAG; 100 µM) in combination with NaHS was added to the growth medium of NaCl stressed seedlings. The NaCl reduced the overall growth of the seedlings as the Na+ uptake was increased which led to removal of K+, thereby Na+/K+ homeostasis was disturbed. This condition caused severe impact on photosynthetic pigments and PS II photochemistry, thus significant decline in the values of fluorescence kinetics parameters such as Fv/Fm, FV/F0, φE0, ѱ0, PIABS except F0/FV and enhancement in energy flux parameters such as ABS/RC, TR0/RC, ET0/RC and DI0/RC was obtained. Exogenous H2S not only abolished the toxic symptoms in test seedlings but also completely alleviated the decline in growth in case of tomato seedlings. Reactive oxygen species accumulation was significantly declined in both the seedlings as evident by in vitro and in vivo analysis with the supplementation of NaHS, indicating appreciable recovery in membrane damage caused by NaCl toxicity. Antioxidative enzymes: SOD, POD, CAT and GST activities were further stimulated in response to H2S (NaHS) supplementation to the stressed seedlings, thus maintaining the redox homeostasis of cell and bringing the seedlings back to the healthy state. Moreover, the role of endogenous and exogenous H2S was also justified using the scavenger of H2S (HT; 200 µM) and inhibitor of enzymes of H2S (PAG; 100 µM). Thus, present study emphasizes the role of NaHS as H2S donor in alleviating NaCl stress in crops particularly vegetables tomato and eggplant, and may be considered as a part of important strategies to cope up with NaCl toxicity which is prevailing in natural field condition.


Asunto(s)
Sulfuro de Hidrógeno , Solanum lycopersicum , Solanum melongena , Plantones , Cloruro de Sodio/farmacología
18.
Biochem Biophys Rep ; 26: 100953, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33644425

RESUMEN

Calcium (Ca2+) and nitric oxide (NO) are potentially active and multitasking signaling molecules which are known to regulate abiotic stresses in plants, but their interactive role in the acquisition of metal stress tolerance in cyanobacteria remains elusive. In current study the signaling role of Ca2+ (800 µM) and NO (10 µM SNP) on key physiological and biochemical attributes of the agriculturally and economically important cyanobacterium Nostoc muscorum ATCC 27893 subjected to Ni stress (2 µM) was examined. Results revealed that Ni at elevated level caused severe damages to the test organism but exogenous supplementation of Ca2+ and NO efficiently mitigated its toxic effects and up-regulated the growth, pigment contents, rate of photosynthesis (whole cell oxygen evolution and Chl a fluorescence indices: Kinetic traits: ΦP0, Ψ0, ΦE0 and PIABS, along with Fv/F0), nitrogen metabolism (NO3‾ and NO2‾ uptake, nitrate:NR and NiR; and ammonia:GS and GOGAT; assimilating enzymes), and boosted the enzymatic (SOD, POD, CAT and GST) along with non-enzymatic (proline, cysteine and NP-SH) antioxidants. Whereas the increased values of energy flux traits: (ABS/RC, TR0/RC, DI0/RC and ET0/RC) along with F0/Fv, rate of respiration, oxidative stress biomarkers (SOR, H2O2 and MDA), and activity of GDH enzyme exhibited lowering trends with application of Ca2+ and NO. Further, addition of EGTA (Ca2+ scavenger) and PTIO (NO scavenger) reversed the positive impacts of Ca2+ and NO and worsened the toxicity of Ni on test cyanobacterium, but the damages were more pronounced under PTIO application that demonstrated Ca2+ mediated signaling role of NO in Ni toxicity alleviation.

19.
Sci Rep ; 11(1): 2893, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536576

RESUMEN

In the present study, defensive strategies of H2O2 mediated NO signaling were analyzed in Cd stressed Nostoc muscorum and Anabaena sp. Exogenously supplied SNP (10 µM) and H2O2 (1 µM) lessen the toxicity of Cd (6 µM) but without NO; H2O2 was unable to release the stress from cyanobacterial cells potentially. The reduced contents of exopolysaccharide, protein content, endogenous NO and enzymatic antioxidants (SOD, POD, CAT, and GST) due to Cd toxicity, were found increased significantly after exogenous application of H2O2 and SNP thereafter, cyanobacterial calls flourished much better after releasing toxic level of Cd. Moreover, increased level of ROS due to Cd stress also normalized under exogenous application of H2O2 and SNP. However, chelation of NO hindered the signaling mechanism of H2O2 that diminished its potential against Cd stress while signaling of NO has not been hindered by chelation of H2O2 and NO potentially released the Cd stress from cyanobacterial cells. In conclusion, current findings demonstrated the synergistic signaling between H2O2 and NO towards the improvement of cyanobacterial tolerance to Cd stress, thereby enhancing the growth and antioxidant defense system of test cyanobacteria that improved fertility and productivity of soil even under the situation of metal contamination.


Asunto(s)
Anabaena/efectos de los fármacos , Cadmio/toxicidad , Nostoc muscorum/efectos de los fármacos , Oryza/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Anabaena/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Nostoc muscorum/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plantones/crecimiento & desarrollo , Microbiología del Suelo
20.
J Hazard Mater ; 409: 123686, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549357

RESUMEN

The role of nitric oxide (NO) and hydrogen peroxide (H2O2) is well known for regulating plant abiotic stress responses. However, underlying mechanisms are still poorly understood. Therefore, the present study investigated the involvement of NO and H2O2 signalling in the regulation of arsenate toxicity (AsV) in soybean roots employing a pharmacological approach. Results show that AsV toxicity declined root length and biomass due to greater As accumulation in the cell wall and cellular organelles. Arsenate induced cell death due to enhanced levels of reactive oxygen species, lipid and protein oxidation and down-regulation in ascorbate-glutathione cycle and redox states of ascorbate and glutathione. These results correlate with lower endogenous level of NO. Interestingly, addition of L-NAME increased AsV toxicity. However, addition of SNP reverses effect of L-NAME, suggesting that endogenous NO has a role in mitigating AsV toxicity. Exogenous H2O2 also demonstrated capability of alleviating AsV stress, while NAC reversed the protective effect of H2O2. Furthermore, DPI application further increased AsV toxicity, suggesting that endogenous H2O2 is also implicated in mitigating AsV stress. SNP was not able to mitigate AsV toxicity in the presence of DPI, suggesting that H2O2 might have acted downstream of NO in accomplishing amelioration of AsV toxicity.


Asunto(s)
Peróxido de Hidrógeno , Óxido Nítrico , Antioxidantes , Arseniatos/toxicidad , Ácido Ascórbico/farmacología , Glutatión/metabolismo , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo , Raíces de Plantas/metabolismo , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...