Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21189, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954398

RESUMEN

The utilization of Maxwell fluid with nanoparticle suspension exhibits promising prospects in enhancing the efficacy of energy conversion and storage mechanisms. They have the potential to be utilized in sophisticated cooling systems for power generation facilities, thereby augmenting the overall energy efficacy. Keeping this in mind, the current research examines the Maxwell nanofluid flow over a rotating disk with the impact of a heat source/sink. The present study centers on the examination of flow characteristics in the existence of a uniform magnetic field. The conversion of governing equations into ordinary differential equations is achieved using appropriate similarity variables. To derive the Nusselt number (Nu) and skin friction (SF) model related to the flow and temperature parameters, the suggested back-propagation artificial neural networking (ANN) technique is used. The Runge-Kutta-Fehlberg fourth-fifth order (RKF-45) method is used to solve the reduced equations and produce the necessary data to create the Nu and SF model. Both the Nu and SF models require 1000 data for training the network, respectively. Graphs are utilized to communicate numerical outcomes. The results concluded that the upsurge in magnetic parameter drops the velocity profile but advances the heat transport. Rise in the thermal conductivity parameter, increases the heat transport.

2.
Sci Rep ; 13(1): 14795, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684341

RESUMEN

Access to dependable and environmentally friendly energy sources is critical to a country's economic growth and long-term development. As countries seek greener energy alternatives, the interaction of environmental elements, temperature, and sunlight becomes more critical in utilizing renewable energy sources such as wind and bioenergy. Solar power has received much attention due to extraordinary efficiency advances. under this context, the present work focus on solar radiation and chemical processes in the presence of modified ternary hybrid nanofluids (THNFs) circulating over an exponentially stretched surface in both aiding flow (A-F) and opposing flow (O-F) circumstances. The primary objective of this investigation is to dive into the complicated dynamics of these structures, which are distinguished by complex interactions involving radiation, chemical reactions, and the movement of fluids. We construct reduced ordinary differential equations from the governing equations using suitable similarity transformations, which allows for a more in-depth examination of the liquid's behavior. Numerical simulations using the Runge-Kutta Fehlberg (RKF) approach and shooting techniques are used to understand the underlying difficulties of these reduced equations. The results show that thermal radiation improves heat transmission substantially under O-F circumstances in contrast to A-F conditions. Furthermore, the reaction rate parameter has an exciting connection with concentration levels, with greater rates corresponding to lower concentrations. Furthermore, compared to the O-F scenario, the A-F scenario promotes higher heat transfer in the context of a modified nanofluid. Rising reaction rate and solid fraction volume enhanced mass transfer rate. The rate of thermal distribution in THNFs improves from 0.13 to 20.4% in A-F and 0.16 to 15.06% in O-F case when compared to HNFs. This study has real-world implications in several fields, including developing more efficient solar water heaters, solar thermal generating plants, and energy-saving air conditioners.

3.
Sci Rep ; 12(1): 21733, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526629

RESUMEN

Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.


Asunto(s)
Placas Óseas , Fuerza Coriolis , Aluminio , Agua
4.
Micromachines (Basel) ; 13(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014258

RESUMEN

A variety of methodologies have been used to explore heat transport enhancement, and the fin approach to inspect heat transfer characteristics is one such effective method. In a broad range of industrial applications, including heat exchangers and microchannel heat sinks, fins are often employed to improve heat transfer. Encouraged by this feature, the present research is concerned with the temperature distribution caused by convective and radiative mechanisms in an internal heat-generating porous longitudinal dovetail fin (DF). The Darcy formulation is considered for analyzing the velocity of the fluid passing through the fin, and the Rosseland approximation determines the radiation heat flux. The heat transfer problem of an inverted trapezoidal (dovetail) fin is governed by a second-order ordinary differential equation (ODE), and to simplify it to a dimensionless form, nondimensional terms are utilized. The generated ODE is numerically solved using the spectral collocation method (SCM) via a local linearization approach. The effect of different physical attributes on the dimensionless thermal field and heat flux is graphically illustrated. As a result, the temperature in the dovetail fin transmits in a decreasing manner for growing values of the porosity parameter. For elevated values of heat generation and the radiation-conduction parameter, the thermal profile of the fin displays increasing behavior, whereas an increment in the convection-conduction parameter downsizes the thermal dispersal. It is found that the SCM technique is very effective and more conveniently handles the nonlinear heat transfer equation. Furthermore, the temperature field results from the SCM-based solution are in very close accordance with the outcomes published in the literature.

6.
Sci Rep ; 12(1): 13275, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918433

RESUMEN

The thermal distribution in a convective-radiative concave porous fin appended to an inclined surface has been examined in this research. The equation governing the temperature and heat variation in fin with internal heat generation is transformed using non-dimensional variables, and the resulting partial differential equation (PDE) is tackled using an analytical scheme, generalized residual power series method (GRPSM). Moreover, a graphical discussion is provided to examine the consequence of diverse non-dimensional variables including the parameters of convection-conduction, ambient temperature, radiation, heat generation, and porosity effect on the thermal field of the fin. Also, a graph is plotted to analyze the variations in unsteady temperature gradient using the finite difference method (FDM) and generalized residual power series method (GRPSM). The major result of this investigation unveils that as the convection-conduction parameter scale upsurges, the distribution of temperature in the fin diminishes. For the heat-generating parameter, the thermal distribution inside the fin increases.


Asunto(s)
Convección , Calor , Porosidad , Temperatura
7.
Sci Rep ; 11(1): 16030, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362971

RESUMEN

In this study, a mathematical model is developed to scrutinize the transient magnetic flow of Cross nanoliquid past a stretching sheet with thermal radiation effects. Binary chemical reactions and heat source/sink effects along with convective boundary condition are also taken into the consideration. Appropriate similarity transformations are utilized to transform partial differential equations (PDE's) into ordinary ones and then numerically tackled by shooting method. The impacts of different emerging parameters on the thermal, concentration, velocity, and micro-rotation profiles are incorporated and discussed in detail by means of graphs. Results reveal that, the escalation in magnetic parameter and Rayleigh number slowdowns the velocity and momentum of the fluid. The increase in Biot number, radiation and heat sink/source parameters upsurges the thermal boundary but, converse trend is seen for escalating Prandtl number. The density number of motile microorganisms acts as a growing function of bioconvection Lewis number and declining function of bioconvection Peclet number.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...