Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 609(7928): 741-746, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35772670

RESUMEN

The January 2022 Hunga Tonga-Hunga Ha'apai eruption was one of the most explosive volcanic events of the modern era1,2, producing a vertical plume that peaked more than 50 km above the Earth3. The initial explosion and subsequent plume triggered atmospheric waves that propagated around the world multiple times4. A global-scale wave response of this magnitude from a single source has not previously been observed. Here we show the details of this response, using a comprehensive set of satellite and ground-based observations to quantify it from surface to ionosphere. A broad spectrum of waves was triggered by the initial explosion, including Lamb waves5,6 propagating at phase speeds of 318.2 ± 6 m s-1 at surface level and between 308 ± 5 to 319 ± 4 m s-1 in the stratosphere, and gravity waves7 propagating at 238 ± 3 to 269 ± 3 m s-1 in the stratosphere. Gravity waves at sub-ionospheric heights have not previously been observed propagating at this speed or over the whole Earth from a single source8,9. Latent heat release from the plume remained the most significant individual gravity wave source worldwide for more than 12 h, producing circular wavefronts visible across the Pacific basin in satellite observations. A single source dominating such a large region is also unique in the observational record. The Hunga Tonga eruption represents a key natural experiment in how the atmosphere responds to a sudden point-source-driven state change, which will be of use for improving weather and climate models.

2.
Sci Rep ; 2: 572, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22893851

RESUMEN

The 39-day long eruption at the summit of Eyjafjallajökull volcano in April-May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·10¹¹â€…kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km³). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km³) transported by 3-10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·10¹°â€…kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km² in Europe and the North Atlantic. Of order 10¹°â€…kg (2%) are considered to have been transported longer than 600-700 km with <108 kg (<0.02%) reaching mainland Europe.


Asunto(s)
Erupciones Volcánicas , Europa (Continente) , Geografía , Islandia , Tamaño de la Partícula , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA