Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
J Alzheimers Dis ; 100(1): 119-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848192

RESUMEN

Background: Chronic intake of extra virgin olive oil is beneficial for brain health and protects from age-related cognitive decline and dementia, whose most common clinical manifestation is Alzheimer's disease. Besides the classical pathologic deposits of amyloid beta peptides and phosphorylated tau proteins, another frequent feature of the Alzheimer's brain is neuroinflammation. Objective: In the current study, we assessed the effect that extra virgin olive oil has on neuroinflammation when administered to a mouse model of the disease. Methods: Triple transgenic mice were randomized to receive a diet enriched with extra virgin olive oil or regular diet for 8 weeks. At the end of this treatment period the expression level of several inflammatory biomarkers was assessed in the central nervous system. Results: Among the 79 biomarkers measured, compared with the control group, mice receiving the extra virgin olive oil had a significant reduction in MIP-2, IL-17E, IL-23, and IL-12p70, but an increase in IL-5. To validate these results, specific ELISA kits were used for each of them. Confirmatory results were obtained for MIP-2, IL-17E, IL-23, and IL-12-p70. No significant differences between the two groups were observed for IL-5. Conclusions: Our results demonstrate that chronic administration of extra virgin olive oil has a potent anti-neuroinflammatory action in a model of Alzheimer's disease. They provide additional pre-clinical support and novel mechanistic insights for the beneficial effect that this dietary intervention has on brain health and dementia.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Aceite de Oliva , Animales , Aceite de Oliva/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/dietoterapia , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Humanos , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Biomarcadores , Presenilina-1/genética , Masculino , Citocinas/metabolismo
2.
J Alzheimers Dis Rep ; 8(1): 923-925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910941

RESUMEN

 A recent article by El Haj et al. provided evidence that ChatGPT could be a potential tool that complements the clinical diagnosis of various stages of Alzheimer's Disease (AD) as well as mild cognitive impairment (MCI). To reassess the accuracy and reproducibility of ChatGPT in the diagnosis of AD and MCI, we used the same prompt used by the authors. Surprisingly, we found that some of the responses of ChatGPT in the diagnoses of various stages of AD and MCI were different. In this commentary we discuss the possible reasons for these different results and propose strategies for future studies.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38900184

RESUMEN

This cross-sectional study addressed the ABCA7-Alzheimer's disease (AD) association. ABCA7 protein levels were quantified in 3 cerebral regions of brain donors with Braak neurofibrillary tangle (NFT) stages 0-V. Ordinal regression models were implemented to estimate the effect of ABCA7 on stopping in an earlier Braak NFT stage versus progressing to the later stages in 2 prespecified age segments. In the final model, high ABCA7 levels in the parietal cortex increased the odds of remaining cognitively healthy (ie, in stages 0/I) versus experiencing AD onset (ie, progressing to stages II-V) in the 61-80 age segment (OR = 2.87, adj 95% CI = 1.41-7.86, adj P = .007, n = 109), after controlling for APOE and other covariates. No ABCA7-AD association was found in the 81-98 age segment (n = 113). Parietal ABCA7 levels in 61-80-year-old with stages II-V were very low, even significantly lower than in 81-98-year-old with stages II-V. ABCA7 levels in the prefrontal cortex and hippocampus predicted AD onset in the 61-80 age segment after adjustment for APOE. ABCA7 levels were also the lowest in 61-80-year-old with frequent neuritic plaques. Thus, very low ABCA7 levels in the cerebrum are associated with AD onset in the 7th-8th decade of life.

4.
Mol Cell Endocrinol ; 592: 112309, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852657

RESUMEN

Angiotensin II (Ang II) is a protein hormone capable of physiologically regulating blood pressure through diverse mechanisms. Ang II is mainly produced by the liver at homeostatic levels. However, excessive production of Ang II is closely associated with a series of pathological events in the body. The endothelial dysfunction is one of these pathological events that can drive vascular anomalies. The excessive exposure of endothelial cells (ECs) to Ang II may induce endothelial dysfunction via diverse mechanisms. One of these mechanisms is Ang II-mediated mitochondrial oxidative stress. In this mini-review, we aimed to discuss the molecular mechanisms of Ang II-mediated endothelial dysfunction through mitochondrial oxidative stress and the protective role of nitric oxide in ECs. Deciphering these mechanisms may disclose novel therapeutic strategies to prevent endothelial dysfunction and associated diseases induced by elevated leves of Ang II in the blood.

5.
Acta Pharmacol Sin ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773228

RESUMEN

The endothelium, lining the inner surface of blood vessels and spanning approximately 3 m2, serves as the largest organ in the body. Comprised of endothelial cells, the endothelium interacts with other bodily components including the bloodstream, circulating cells, and the lymphatic system. Functionally, the endothelium primarily synchronizes vascular tone (by balancing vasodilation and vasoconstriction) and prevents vascular inflammation and pathologies. Consequently, endothelial dysfunction disrupts vascular homeostasis, leading to vascular injuries and diseases such as cardiovascular, cerebral, and metabolic diseases. In this opinion/perspective piece, we explore the recently identified mechanisms of endothelial dysfunction across various disease subsets and critically evaluate the strengths and limitations of current therapeutic interventions at the pre-clinical level.

6.
J Alzheimers Dis ; 99(1): 1-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640152

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a global impact. The past few decades have witnessed significant strides in comprehending the underlying pathophysiological mechanisms and developing diagnostic methodologies for AD, such as neuroimaging approaches. Neuroimaging techniques, including positron emission tomography and magnetic resonance imaging, have revolutionized the field by providing valuable insights into the structural and functional alterations in the brains of individuals with AD. These imaging modalities enable the detection of early biomarkers such as amyloid-ß plaques and tau protein tangles, facilitating early and precise diagnosis. Furthermore, the emerging technologies encompassing blood-based biomarkers and neurochemical profiling exhibit promising results in the identification of specific molecular signatures for AD. The integration of machine learning algorithms and artificial intelligence has enhanced the predictive capacity of these diagnostic tools when analyzing complex datasets. In this review article, we will highlight not only some of the most used diagnostic imaging approaches in neurodegeneration research but focus much more on new tools like artificial intelligence, emphasizing their application in the realm of AD. These advancements hold immense potential for early detection and intervention, thereby paving the way for personalized therapeutic strategies and ultimately augmenting the quality of life for individuals affected by AD.


Asunto(s)
Enfermedad de Alzheimer , Inteligencia Artificial , Diagnóstico Precoz , Neuroimagen , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Biomarcadores/análisis
7.
Brain Sci ; 14(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38539673

RESUMEN

Sensory processing is a fundamental aspect of the nervous system that plays a pivotal role in the cognitive decline observed in older individuals with dementia. The "sensory diet", derived from sensory integration theory, may provide a tailored approach to modulating sensory experiences and triggering neuroplastic changes in the brain in individuals with dementia. Therefore, this review aimed to investigate the current knowledge regarding the sensory diet and its potential application to dementia. This review encompassed an extensive search across multiple databases, including PubMed, Google Scholar, covering articles published from 2010 to 2023. Keywords such as "sensory integration", "sensory modulation", "healthy aging", and "dementia" were utilized to identify relevant studies. The types of materials retrieved included peer-reviewed articles, systematic reviews, and meta-analyses, ensuring a comprehensive overview of the current research landscape. This article offers a comprehensive exploration of the effectiveness of sensory diets such as tactile stimulation, auditory therapies, and visual interventions, which have demonstrated noteworthy efficacy in addressing challenges linked to aging and dementia. Research findings consistently report positive outcomes, such as improved cognitive function, elevated emotional well-being, and enhanced overall quality of life in older individuals. Furthermore, we found that the integration of sensory diets with the metaverse, augmented reality, and virtual reality opens up personalized experiences, fostering cognitive stimulation and emotional well-being for individuals during aging. Therefore, we conclude that customized sensory diets, based on interdisciplinary cooperation and leveraging technological advancements, are effective in optimizing sensory processing and improve the overall well-being of older individuals contending with sensory modulation challenges and dementia.

8.
Pharmacol Ther ; 255: 108604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360205

RESUMEN

The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Enfermedades Metabólicas , Neoplasias , Enfermedades Neurodegenerativas , Humanos , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Calcio/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad Crónica , Enfermedades Cardiovasculares/tratamiento farmacológico , Inmunidad , Alimentos Marinos , Neoplasias/tratamiento farmacológico
9.
Cells ; 12(17)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37681876

RESUMEN

Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-ß-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1ß and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1ß and TNFα inflammatory responses in human microglia.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedades Hematológicas , Microglía , Humanos , Astrocitos , Transportadoras de Casetes de Unión a ATP/genética , Regulación hacia Abajo , Células THP-1 , Factor de Necrosis Tumoral alfa/farmacología
10.
Ageing Res Rev ; 90: 102033, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595640

RESUMEN

Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aß) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, ß-secretase (BACE1), Glycogen synthase kinase 3ß (GSK-3ß) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aß production, GSK-3ß is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3ß and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Humanos , Glucógeno Sintasa Quinasa 3 beta , Péptidos beta-Amiloides , Secretasas de la Proteína Precursora del Amiloide , Neurobiología , Enfermedades Neuroinflamatorias , Ácido Aspártico Endopeptidasas
11.
Hum Genomics ; 17(1): 57, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420280

RESUMEN

Alzheimer's disease (AD) poses a profound human, social, and economic burden. Previous studies suggest that extra virgin olive oil (EVOO) may be helpful in preventing cognitive decline. Here, we present a network machine learning method for identifying bioactive phytochemicals in EVOO with the highest potential to impact the protein network linked to the development and progression of the AD. A balanced classification accuracy of 70.3 ± 2.6% was achieved in fivefold cross-validation settings for predicting late-stage experimental drugs targeting AD from other clinically approved drugs. The calibrated machine learning algorithm was then used to predict the likelihood of existing drugs and known EVOO phytochemicals to be similar in action to the drugs impacting AD protein networks. These analyses identified the following ten EVOO phytochemicals with the highest likelihood of being active against AD: quercetin, genistein, luteolin, palmitoleate, stearic acid, apigenin, epicatechin, kaempferol, squalene, and daidzein (in the order from the highest to the lowest likelihood). This in silico study presents a framework that brings together artificial intelligence, analytical chemistry, and omics studies to identify unique therapeutic agents. It provides new insights into how EVOO constituents may help treat or prevent AD and potentially provide a basis for consideration in future clinical studies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Aceite de Oliva/uso terapéutico , Aceite de Oliva/química , Inteligencia Artificial , Aprendizaje Automático
12.
J Alzheimers Dis ; 94(2): 513-518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334603

RESUMEN

BACKGROUND: Retromer complex proteins are decreased in postmortem brain tissues from Down syndrome subjects and inversely correlate with the Alzheimer's disease-like neuropathology. However, whether targeting in vivo the retromer system affects cognitive deficits and synaptic function in Down syndrome remains unknown. OBJECTIVE: The aim of the current study was to examine the effects of pharmacological retromer stabilization on cognitive and synaptic functions in a mouse model of Down syndrome. METHODS: Ts65dn mice were administered the pharmacological chaperone, TPT-172, or vehicle from 4 to 9 months of age and then assessed for changes in cognitive function. To assess the effects of TPT-172 on synaptic plasticity, hippocampal slices from Ts65dn mice were incubated in TPT-172 and used for field potential recordings. RESULTS: Chronic TPT-172 treatment improved performance in cognitive function tests, its incubation with hippocampal slices ameliorated synaptic function response. CONCLUSION: Pharmacological stabilization of the retromer complex improves synaptic plasticity and memory in a mouse model of Down syndrome. These results support the therapeutic potential of pharmacological retromer stabilization for individual with Down syndrome.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Ratones , Animales , Síndrome de Down/metabolismo , Ratones Transgénicos , Cognición , Plasticidad Neuronal/fisiología , Enfermedad de Alzheimer/patología , Hipocampo/patología , Modelos Animales de Enfermedad
14.
Trends Endocrinol Metab ; 34(6): 373-387, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37076375

RESUMEN

Aging triggers a wide range of cellular and molecular aberrations in the body, giving rise to inflammation and associated diseases. In particular, aging is associated with persistent low-grade inflammation even in absence of inflammatory stimuli, a phenomenon commonly referred to as 'inflammaging'. Accumulating evidence has revealed that inflammaging in vascular and cardiac tissues is associated with the emergence of pathological states such as atherosclerosis and hypertension. In this review we survey molecular and pathological mechanisms of inflammaging in vascular and cardiac aging to identify potential targets, natural therapeutic compounds, and other strategies to suppress inflammaging in the heart and vasculature, as well as in associated diseases such as atherosclerosis and hypertension.


Asunto(s)
Aterosclerosis , Hipertensión , Humanos , Envejecimiento , Inflamación/patología
17.
J Alzheimers Dis ; 91(1): 463-469, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36442197

RESUMEN

BACKGROUND: The endosomal retromer complex system is a key controller for trafficking of proteins. Downregulation of its recognition core proteins, such as VPS35, is present in Alzheimer's disease (AD) brain, whereas its normalization prevents the development of AD pathology in a transgenic model with amyloid-ß deposits and tau tangles. OBJECTIVE: Assess the effect of targeting VPS35 after the AD pathology and memory impairments have developed. METHODS: Twelve-month-old triple transgenic mice were treated with a small pharmacological chaperone, TPT-172, or vehicle for 14 weeks. At the end of this period, the effect of the drug on their phenotype was evaluated. RESULTS: While control mice had a decline of learning and memory, the group receiving the chaperone did not. Moreover, when compared with controls the treated mice had significantly less amyloid-ß peptides and phosphorylated tau, elevation of post-synaptic protein, and reduction in astrocytes activation. CONCLUSION: Taken together, our findings demonstrate that pharmacologic stabilization of the retromer recognition core is beneficial also after the AD-like pathologic phenotype is established.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Fenotipo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte Vesicular/genética
18.
Mol Neurobiol ; 60(3): 1733-1745, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567360

RESUMEN

Growing evidence has associated major depressive disorder (MDD) as a risk factor or prodromal syndrome for the occurrence of Alzheimer's disease (AD). Although this dilemma remains open, it is widely shown that a lifetime history of MDD is correlated with faster progression of AD pathology. Therefore, antidepressant drugs with neuroprotective effects could be an interesting therapeutic conception to target this issue simultaneously. In this sense, 1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) was initially conceived as a multi-target ligand with affinity to ß-secretase (BACE), glycogen synthase kinase 3ß (GSK3ß), and acetylcholinesterase but has also shown secondary effects on pathways involved in neuroinflammation and neurogenesis in preclinical models of AD. Herein, we investigated the effect of QTC-4-MeOBnE (1 mg/kg) administration for 45 days on depressive-like behavior and memory impairment in 3xTg mice, before the pathology is completely established. The treatment with QTC-4-MeOBnE prevented memory impairment and depressive-like behavior assessed by the Y-Maze task and forced swimming test. This effect was associated with the modulation of plural pathways involved in the onset and progression of AD, in cerebral structures of the cortex and hippocampus. Among them, the reduction of amyloid beta (Aß) production mediated by changes in amyloid precursor protein metabolism and hippocampal tau phosphorylation through the inhibition of kinases. Additionally, QTC-4-MeOBnE also exerted beneficial effects on neuroinflammation and synaptic integrity. Overall, our studies suggest that QTC-4-MeOBnE has a moderate effect in a transgenic model of AD, indicating that perhaps studies regarding the neuropsychiatric effects as a neuroprotective molecule are more prone to be feasible.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Ratones Transgénicos , Trastorno Depresivo Mayor/patología , Enfermedades Neuroinflamatorias , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Triazoles/farmacología , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo
20.
Nutrients ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501136

RESUMEN

Mild cognitive impairment (MCI) and early Alzheimer's disease (AD) are characterized by blood-brain barrier (BBB) breakdown leading to abnormal BBB permeability ahead of brain atrophy or dementia. Previous findings in AD mouse models have reported the beneficial effect of extra-virgin olive oil (EVOO) against AD, which improved BBB and memory functions and reduced brain amyloid-ß (Aß) and related pathology. This work aimed to translate these preclinical findings to humans in individuals with MCI. We examined the effect of daily consumption of refined olive oil (ROO) and EVOO for 6 months in MCI subjects on BBB permeability (assessed by contrast-enhanced MRI), and brain function (assessed using functional-MRI) as the primary outcomes. Cognitive function and AD blood biomarkers were also assessed as the secondary outcomes. Twenty-six participants with MCI were randomized with 25 participants completed the study. EVOO significantly improved clinical dementia rating (CDR) and behavioral scores. EVOO also reduced BBB permeability and enhanced functional connectivity. While ROO consumption did not alter BBB permeability or brain connectivity, it improved CDR scores and increased functional brain activation to a memory task in cortical regions involved in perception and cognition. Moreover, EVOO and ROO significantly reduced blood Aß42/Aß40 and p-tau/t-tau ratios, suggesting that both altered the processing and clearance of Aß. In conclusion, EVOO and ROO improved CDR and behavioral scores; only EVOO enhanced brain connectivity and reduced BBB permeability, suggesting EVOO biophenols contributed to such an effect. This proof-of-concept study justifies further clinical trials to assess olive oil's protective effects against AD and its potential role in preventing MCI conversion to AD and related dementias.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratones , Humanos , Aceite de Oliva/farmacología , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/prevención & control , Disfunción Cognitiva/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...