Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 81: 102590, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968911

RESUMEN

Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.

2.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37937667

RESUMEN

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Asunto(s)
Histonas , Nucleosomas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Cromatina/genética , Respuesta al Choque Térmico/genética , Epigénesis Genética
3.
Curr Opin Plant Biol ; 61: 102007, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571730

RESUMEN

As sessile organisms, plants have evolved sophisticated ways to constantly gauge and adapt to changing environmental conditions including extremes that may be harmful to their growth and development and are thus perceived as stress. In nature, stressful events are often chronic or recurring and thus an initial stress may prime a plant to respond more efficiently to a subsequent stress event. An epigenetic basis of such stress memory was long postulated and in recent years it has been shown that this is indeed the case. High temperature stress has proven an excellent system to unpick the molecular basis of somatic stress memory, which includes histone modifications and nucleosome occupancy. This review discusses recent findings and pinpoints open questions in the field.


Asunto(s)
Epigénesis Genética , Estrés Fisiológico , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Código de Histonas , Plantas/genética , Estrés Fisiológico/genética
4.
Mol Ecol ; 28(10): 2559-2572, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30964953

RESUMEN

Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root-knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant-parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Plantas/genética , Reproducción Asexuada/genética , Tylenchoidea/genética , Animales , Evolución Biológica , Genómica , Enfermedades de las Plantas , Fenómenos Fisiológicos de las Plantas/genética , Raíces de Plantas/genética , Plantas/parasitología , Tylenchoidea/patogenicidad , Tylenchoidea/fisiología
5.
BMC Genomics ; 19(1): 321, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724186

RESUMEN

BACKGROUND: The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. RESULTS: Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. CONCLUSIONS: Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment.


Asunto(s)
Epigénesis Genética , Genoma , Plantas/parasitología , Reproducción Asexuada/genética , Tylenchoidea/genética , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , ADN (Citosina-5-)-Metiltransferasas/clasificación , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Filogenia , Raíces de Plantas/parasitología , Procesamiento Proteico-Postraduccional/genética , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , ARN Pequeño no Traducido/genética
6.
Front Physiol ; 5: 211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24936189

RESUMEN

Root-knot nematodes of the genus Meloidogyne are biotrophic plant parasites that exhibit different life cycles and reproduction modes, ranging from classical amphimixis to obligatory mitotic parthenogenesis (apomixis), depending on the species. Meloidogyne incognita, an apomictic species, exhibits a worldwide distribution and a wide host range affecting more than 3000 plant species. Furthermore, evidences suggest that apomixis does not prevent M. incognita from adapting to its environment in contrast to what is expected from mitotic parthenogenesis that should theoretically produce clonal progenies. This raises questions about mechanisms of genome plasticity leading to genetic variation and adaptive evolution in apomictic animals. We reasoned that epigenetic mechanisms might in part be responsible for the generation of phenotypic variants that provide potential for rapid adaptation. We established therefore a pipeline to investigate the principal carriers of epigenetic information, DNA methylation and post-translational histone modifications. Even if M. incognita possesses the epigenetic machinery i.e., chromatin modifying enzymes, 5-methyl-cytosine and 5-hydroxy-methyl-cytosine content is absent or very weak. In contrast, we demonstrated that the canonical histone modifications are present and chromatin shows typical nucleosome structure. This work is the first characterization of carriers of epigenetic information in M. incognita and constitutes a preamble to further investigate if M. incognita development and its adaptation to plant hosts are under epigenetic control. Our pipeline should allow performing similar types of studies in any non-model organism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA