Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334838

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.


Asunto(s)
Discapacidad Intelectual , Animales , Ratones , Discapacidad Intelectual/metabolismo , Autorrenovación de las Células , Glicosilación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
2.
Nat Commun ; 13(1): 5212, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064721

RESUMEN

Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases.


Asunto(s)
Amoníaco , Carbamoil-Fosfato Sintasa (Amoniaco) , Hiperamonemia , Urea , Uridina Difosfato , Acetilglucosamina , Amoníaco/metabolismo , Animales , Biocatálisis , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Modelos Animales de Enfermedad , Glicosilación , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Mamíferos/metabolismo , Ratones , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acidemia Propiónica/genética , Acidemia Propiónica/metabolismo , Procesamiento Proteico-Postraduccional/genética , Urea/metabolismo , Uridina Difosfato/genética , Uridina Difosfato/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544876

RESUMEN

Aspergillus fumigatus is a human opportunistic pathogen showing emerging resistance against a limited repertoire of antifungal agents available. The GTPase Rho1 has been identified as an important regulator of the cell wall integrity signaling pathway that regulates the composition of the cell wall, a structure that is unique to fungi and serves as a target for antifungal compounds. Rom2, the guanine nucleotide exchange factor to Rho1, contains a C-terminal citron homology (CNH) domain of unknown function that is found in many other eukaryotic genes. Here, we show that the Rom2 CNH domain interacts directly with Rho1 to modulate ß-glucan and chitin synthesis. We report the structure of the Rom2 CNH domain, revealing that it adopts a seven-bladed ß-propeller fold containing three unusual loops. A model of the Rho1-Rom2 CNH complex suggests that the Rom2 CNH domain interacts with the Rho1 Switch II motif. This work uncovers the role of the Rom2 CNH domain as a scaffold for Rho1 signaling in fungal cell wall biosynthesis.


Asunto(s)
Aspergillus fumigatus/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Pared Celular/fisiología , Proteínas Fúngicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética
4.
Sci Rep ; 10(1): 12067, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694578

RESUMEN

Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Endocitosis , Humanos , Cinética , Complejos Multiproteicos/metabolismo , Unión Proteica , Inhibidor Tisular de Metaloproteinasa-3/antagonistas & inhibidores , Inhibidor Tisular de Metaloproteinasa-3/genética
5.
Eur J Hum Genet ; 28(6): 706-714, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32080367

RESUMEN

Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with ß-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Trastornos Congénitos de Glicosilación/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Mutación Puntual , Síndrome
6.
FEBS Lett ; 594(4): 717-727, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31627256

RESUMEN

X-linked intellectual disabilities (XLID) are common developmental disorders. The enzyme O-GlcNAc transferase encoded by OGT, a recently discovered XLID gene, attaches O-GlcNAc to nuclear and cytoplasmic proteins. As few missense mutations have been described, it is unclear what the aetiology of the patient phenotypes is. Here, we report the discovery of a missense mutation in the catalytic domain of OGT in an XLID patient. X-ray crystallography reveals that this variant leads to structural rearrangements in the catalytic domain. The mutation reduces in vitro OGT activity on substrate peptides/protein. Mouse embryonic stem cells carrying the mutation reveal reduced O-GlcNAcase (OGA) and global O-GlcNAc levels. These data suggest a direct link between changes in the O-GlcNAcome and intellectual disability observed in patients carrying OGT mutations.


Asunto(s)
Dominio Catalítico , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Mutación Missense , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Animales , Línea Celular , Glicosilación , Humanos , Discapacidad Intelectual/metabolismo , Ratones , Modelos Moleculares , N-Acetilglucosaminiltransferasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(30): 14961-14970, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31296563

RESUMEN

O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.


Asunto(s)
Dominio Catalítico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , N-Acetilglucosaminiltransferasas/genética , Animales , Línea Celular , Drosophila , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Factor C1 de la Célula Huésped/metabolismo , Humanos , Discapacidad Intelectual/patología , Ratones , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Neurogénesis , Mutación Puntual , Gemelos Monocigóticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...