Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1179, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985891

RESUMEN

The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , NAD/metabolismo , Células-Madre Neurales/metabolismo , Mitocondrias/metabolismo , Neuronas Dopaminérgicas/metabolismo
2.
Nat Biotechnol ; 41(9): 1320-1331, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36658342

RESUMEN

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisión , Genoma , Genómica , Microbioma Gastrointestinal/genética
3.
Bioinformatics ; 38(20): 4831-4832, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36047841

RESUMEN

MOTIVATION: Genome-scale metabolic reconstructions have been assembled for thousands of organisms using a wide range of tools. However, metabolite annotations, required to compare and link metabolites between reconstructions, remain incomplete. Here, we aim to further extend metabolite annotation coverage using various databases and chemoinformatic approaches. RESULTS: We developed a COBRA toolbox extension, deemed MetaboAnnotator, which facilitates the comprehensive annotation of metabolites with database independent and dependent identifiers, obtains molecular structure files, and calculates metabolite formula and charge at pH 7.2. The resulting metabolite annotations allow for subsequent cross-mapping between reconstructions and mapping of, e.g., metabolomic data. AVAILABILITY AND IMPLEMENTATION: MetaboAnnotator and tutorials are freely available at https://github.com/opencobra. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes y Vías Metabólicas , Programas Informáticos , Bases de Datos Factuales , Genoma , Metabolómica
4.
Nat Protoc ; 14(3): 639-702, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787451

RESUMEN

Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.


Asunto(s)
Modelos Biológicos , Programas Informáticos , Genoma , Redes y Vías Metabólicas , Biología de Sistemas
5.
Nucleic Acids Res ; 47(D1): D614-D624, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30371894

RESUMEN

A multitude of factors contribute to complex diseases and can be measured with 'omics' methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic Human (VMH, www.vmh.life) database encapsulating current knowledge of human metabolism within five interlinked resources 'Human metabolism', 'Gut microbiome', 'Disease', 'Nutrition', and 'ReconMaps'. The VMH captures 5180 unique metabolites, 17 730 unique reactions, 3695 human genes, 255 Mendelian diseases, 818 microbes, 632 685 microbial genes and 8790 food items. The VMH's unique features are (i) the hosting of the metabolic reconstructions of human and gut microbes amenable for metabolic modeling; (ii) seven human metabolic maps for data visualization; (iii) a nutrition designer; (iv) a user-friendly webpage and application-programming interface to access its content; (v) user feedback option for community engagement and (vi) the connection of its entities to 57 other web resources. The VMH represents a novel, interdisciplinary database for data interpretation and hypothesis generation to the biomedical community.


Asunto(s)
Bases de Datos Genéticas , Microbioma Gastrointestinal , Genómica/métodos , Metaboloma , Metabolómica/métodos , Genoma Humano , Interacciones Huésped-Patógeno , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...