Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1347318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500881

RESUMEN

Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.


Asunto(s)
Paracoccidioidomicosis , Ratones , Animales , Antígeno CTLA-4 , Receptor de Muerte Celular Programada 1 , Ratones Endogámicos C57BL , Gravedad del Paciente , Inmunoglobulina G
2.
Front Cell Infect Microbiol ; 13: 1268959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868350

RESUMEN

Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1ß, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Animales , Ratones , Paracoccidioides/genética , Proteómica , Ratones Endogámicos C57BL , Hierro/metabolismo , Inmunidad , Granuloma
3.
Sci Rep ; 13(1): 12391, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524886

RESUMEN

Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.


Asunto(s)
Células Supresoras de Origen Mieloide , Paracoccidioidomicosis , Animales , Ratones , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Ratones Noqueados
4.
Front Immunol ; 14: 1039244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776848

RESUMEN

Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.


Asunto(s)
Células Supresoras de Origen Mieloide , Paracoccidioidomicosis , Ratones , Animales , Células Th17/patología , Ratones Endogámicos C57BL , Pulmón
5.
Sci Rep ; 10(1): 11312, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647342

RESUMEN

AhR is a ligand-activated transcription factor that plays an important role in the innate and adaptive immune responses. In infection models, it has been associated with host responses that promote or inhibit disease progression. In pulmonary paracoccidioidomycosis, a primary fungal infection endemic in Latin America, immune protection is mediated by Th1/Th17 cells and disease severity with predominant Th2/Th9/Treg responses. Because of its important role at epithelial barriers, we evaluate the role of AhR in the outcome of a pulmonary model of paracoccidioidomycosis. AhR-/- mice show increased fungal burdens, enhanced tissue pathology and mortality. During the infection, AhR-/- mice have more pulmonary myeloid cells with activated phenotype and reduced numbers expressing indoleamine 2,3 dioxygenase 1. AhR-deficient lungs have altered production of cytokines and reduced numbers of innate lymphoid cells (NK, ILC3 and NCR IL-22). The lungs of AhR-/- mice showed increased presence Th17 cells concomitant with reduced numbers of Th1, Th22 and Foxp3+ Treg cells. Furthermore, treatment of infected WT mice with an AhR-specific antagonist (CH223191) reproduced the main findings obtained in AhR-/- mice. Collectively our data demonstrate that in pulmonary paracoccidioidomycosis AhR controls fungal burden and excessive tissue inflammation and is a possible target for antifungal therapy.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Paracoccidioidomicosis/inmunología , Receptores de Hidrocarburo de Aril/fisiología , Células Th17/inmunología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Células Th17/patología
6.
Front Immunol ; 9: 464, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616019

RESUMEN

Plasmacytoid dendritic cells (pDCs), which have been extensively studied in the context of the immune response to viruses, have recently been implicated in host defense mechanisms against fungal infections. Nevertheless, the involvement of human pDCs during paracoccidioidomycosis (PCM), a fungal infection endemic to Latin America, has been scarcely studied. However, pDCs were found in the cutaneous lesions of PCM patients, and in pulmonary model of murine PCM these cells were shown to control disease severity. These findings led us to investigate the role of human pDCs in the innate phase of PCM. Moreover, considering our previous data on the engagement of diverse Toll-like receptors and C-type lectin receptors receptors in Paracoccidioides brasiliensis recognition, we decided to characterize the innate immune receptors involved in the interaction between human pDCs and yeast cells. Purified pDCs were obtained from peripheral blood mononuclear cells from healthy donors and they were stimulated with P. brasiliensis with or without blocking antibodies to innate immune receptors. Here we demonstrated that P. brasiliensis stimulation activates human pDCs that inhibit fungal growth and secrete pro-inflammatory cytokines and type I IFNs. Surprisingly, P. brasiliensis-stimulated pDCs produce mature IL-1ß and activate caspase 1, possibly via inflammasome activation, which is a phenomenon not yet described during pDC engagement by microorganisms. Importantly, we also demonstrate that dectin-2 and dectin-3 are expressed on pDCs and appear to be involved (via Syk signaling) in the pDC-P. brasiliensis interaction. Moreover, P. brasiliensis-stimulated pDCs exhibited an efficient antigen presentation and were able to effectively activate CD4+ and CD8+ T cells. In conclusion, our study demonstrated for the first time that human pDCs are involved in P. brasiliensis recognition and may play an important role in the innate and adaptive immunity against this fungal pathogen.


Asunto(s)
Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Células Plasmáticas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Caspasa 1/inmunología , Células Dendríticas/patología , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-1beta/inmunología , Activación de Linfocitos , Masculino , Paracoccidioidomicosis/patología , Células Plasmáticas/patología
7.
Front Immunol ; 8: 880, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791025

RESUMEN

In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-ß signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1ß, TGF-ß, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-ß, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...