Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Protoc ; 4(5): e1040, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713136

RESUMEN

In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Asunto(s)
Miedo , Animales , Miedo/psicología , Miedo/fisiología , Ratones , Reproducibilidad de los Resultados
2.
Neuropsychopharmacology ; 49(6): 993-1006, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233571

RESUMEN

The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.


Asunto(s)
Afecto , Conducta Animal , Extinción Psicológica , Miedo , Corteza Prefrontal , Femenino , Masculino , Ratones , Afecto/fisiología , Ansiedad/fisiopatología , Conducta Animal/fisiología , Habilidades de Afrontamiento , Corticosterona/sangre , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Reacción Cataléptica de Congelación , Suspensión Trasera , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Vías Nerviosas , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Sonido , Natación , Techo del Mesencéfalo/citología , Techo del Mesencéfalo/fisiología , Animales
3.
Front Neurosci ; 14: 583477, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100964

RESUMEN

In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA