Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 16(2): 589-605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37036656

RESUMEN

The prophylactic use of lactic acid bacteria (LAB) to maintain human health is one of the most important research areas in recent times. LAB supplementation confers a wide range of health benefits to the host, but few studies have focused on their possible role in delaying the aging process. This study explored the health and life-promoting properties of two LAB, Levilactobacillus brevis and Weizmannia coagulans, using the Caenorhabditis elegans model. We found that L. brevis and W. coagulans enhanced the intestinal integrity and intestinal barrier functions without affecting the overall physiological functions of C. elegans. Wild-type worms preconditioned with LAB strains increased their survival under oxidative and thermal stress conditions by reducing intracellular reactive oxygen levels. Live L. brevis and W. coagulans significantly extended the lifespan of C. elegans under standard laboratory conditions independently of dietary restrictions. Genetic and reporter gene expression analysis revealed that L. brevis and W. coagulans extend lifespan via insulin/insulin-like growth factor-1 signaling and the p38 MAPK signaling axis. Furthermore, sirtuin, JNK MAPK, and mitochondrial respiratory complexes were found to be partially involved in W. coagulans-mediated lifespan extension and stress resilience. Preconditioning with LAB ameliorated age-related functional decline in C. elegans and reduced ectopic fat deposition in an NHR-49-dependent manner. Together, our findings indicated that L. brevis and W. coagulans are worth exploring further as "gerobiotic" candidates to delay aging and improve the healthspan of the host.


Asunto(s)
Proteínas de Caenorhabditis elegans , Levilactobacillus brevis , Animales , Humanos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Envejecimiento , Longevidad , Estrés Oxidativo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36064134

RESUMEN

Zinc oxide (ZnO) nanostructure exhibits antimicrobial properties, which have prompted more research on their bactericidal effect against foodborne pathogens. The present work focused on the green synthesis of ZnO nanoparticles (ZnO NPs) using Cananga odorata essential oil. The synthesized ZnO NPs were characterized by XRD, UV-Vis spectroscopy, zeta potential, SEM, and FT-IR analysis. The bactericidal activity of biosynthesized ZnO NPs was tested against Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro results indicate that ZnO NPs have excellent antibacterial activity and that the bactericidal and bacteriostatic mechanisms are based on ROS production and depend on its penetration and interaction with bacterial cells. Moreover, ZnO NPs were found to be non-toxic to Caenorhabditis elegans, an in vivo animal model, up to 1 g/L and exert antibacterial activity by reducing the growth and colonization of pathogens. By reducing pathogen virulence, ZnO NPs significantly improved worms' physiological functions such as pharyngeal pumping, body length, reproduction, and movement. The competitive effect of ZnO NPs against pathogenic bacteria increased the gut-barrier integrity of C. elegans. The most interesting observation was noted that ZnO treatment increased the mean survival rate of P. aeruginosa and S. aureus infected C. elegans by 56.6 % and 62.4 %, respectively. As an outcome, our study proved that green synthesized ZnO NPs exhibit remarkable biological properties and can be used as an efficient bactericidal agent against foodborne pathogens.


Asunto(s)
Antiinfecciosos , Cananga , Nanopartículas del Metal , Aceites Volátiles , Óxido de Zinc , Animales , Antibacterianos/química , Antibacterianos/farmacología , Caenorhabditis elegans , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA