Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Interferon Cytokine Res ; 39(11): 711-719, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31268382

RESUMEN

Interferon (IFN), the first ever-described cytokine, has a potent activity against viruses. Soon since its discovery, quantification of IFN has been an important issue. Most of the traditional methods to measure IFN biological activity rely on indirect methods that quantify dyes retained by IFN-protected cells against a lytic virus, or by techniques that indirectly quantify viral replication by measuring the expression level of viral-encoded reporter proteins such as the green fluorescent protein (GFP). In both cases, the IFN units are determined by the quantification of an effective dose 50, defined as the IFN dose that prevents 50% cell death of 50% reduction of the maximal amount of GFP intensity. In this study we propose the use of an alternative approach to measure IFN activity by calculating the minimal IFN dose 50 as the amount of IFN able to completely protect 50% of the cells from infection measured by the total absence of virus-dependent GFP signal in a cell culture plate. This sensitive approach could be used to easily quantify the Z value to determine IFN bioassay robustness. We believe that this approximation could be interesting to be considered by the IFN community.


Asunto(s)
Bioensayo , Interferón Tipo I/análisis , Animales , Células Cultivadas , Chlorocebus aethiops , Humanos , Proteínas Recombinantes/análisis , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Virus Sendai/aislamiento & purificación , Células Vero
2.
Antimicrob Agents Chemother ; 60(6): 3524-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27021313

RESUMEN

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis, a disease potentially fatal if not treated. Current available treatments have major limitations, and new and safer drugs are urgently needed. In recent years, advances in high-throughput screening technologies have enabled the screening of millions of compounds to identify new antileishmanial agents. However, most of the compounds identified in vitro did not translate their activities when tested in in vivo models, highlighting the need to develop more predictive in vitro assays. In the present work, we describe the development of a robust replicative, high-content, in vitro intracellular L. donovani assay. Horse serum was included in the assay media to replace standard fetal bovine serum, to completely eliminate the extracellular parasites derived from the infection process. A novel phenotypic in vitro infection model has been developed, complemented with the identification of the proliferation of intracellular amastigotes measured by EdU incorporation. In vitro and in vivo results for miltefosine, amphotericin B, and the selected compound 1 have been included to validate the assay.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Animales , Línea Celular Tumoral , Femenino , Humanos , Leishmania donovani/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Parasitaria , Fosforilcolina/farmacología
3.
Antimicrob Agents Chemother ; 59(6): 3298-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801574

RESUMEN

In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z' factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 µM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Femenino , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Azul de Metileno/farmacología , Plasmodium falciparum/genética , ARN Mensajero/genética , Tioestreptona/farmacología
4.
PLoS Negl Trop Dis ; 9(1): e0003493, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25615687

RESUMEN

BACKGROUND: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Genetically engineered parasitic strains are used for high throughput screening (HTS) of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6) and was validated against a series of known anti-trypanosomatid drugs. CONCLUSIONS/SIGNIFICANCE: We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.


Asunto(s)
Mioblastos/parasitología , Trypanosoma cruzi/efectos de los fármacos , Animales , Automatización de Laboratorios , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Nifurtimox/farmacología , Nitroimidazoles/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...