Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337221

RESUMEN

Immunosensors based on field-effect transistors with nanowire channels (NWFETs) provide fast and real-time detection of a variety of biomarkers without the need for additional labels. The key feature of the developed immunosensor is the coating of silicon NWs with multilayers of polyelectrolytes (polyethylenimine (PEI) and polystyrene sulfonate (PSS)). By causing a macromolecular crowding effect, it ensures the "soft fixation" of the antibodies into the 3-D matrix of the oppositely charged layers. We investigated the interaction of prostate-specific antigen (PSA), a biomarker of prostate cancer, and antibodies adsorbed in the PEI and PSS matrix. In order to visualize the formation of immune complexes between polyelectrolyte layers using SEM and AFM techniques, we employed a second clone of antibodies labeled with gold nanoparticles. PSA was able to penetrate the matrix and concentrate close to the surface layer, which is crucial for its detection on the nanowires. Additionally, this provides the optimal orientation of the antibodies' active centers for interacting with the antigen and improves their mobility. NWFETs were fabricated from SOI material using high-resolution e-beam lithography, thin film vacuum deposition, and reactive-ion etching processes. The immunosensor was characterized by a high sensitivity to pH (71 mV/pH) and an ultra-low limit of detection (LOD) of 0.04 fg/mL for PSA. The response of the immunosensor takes less than a minute, and the measurement is carried out in real time. This approach seems promising for further investigation of its applicability for early screening of prostate cancer and POC systems.

2.
Biosensors (Basel) ; 12(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35448287

RESUMEN

Digital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips. Then biotin is revealed by a streptavidin-GNP conjugate followed by the detection of GNPs. Sharp images of each nanoparticle allow the visualization of hybridization results on a single-molecule level. The technique was shown to provide highly sensitive quantification of both short oligonucleotide and long double-strand DNA sequences up to 800 bp. The lowest limit of detection of 0.04 pM was determined for short 19-mer oligonucleotide. The method's applicability was demonstrated for the multiplex quantification of several ß-lactamase genes responsible for the development of bacterial resistance against ß-lactam antibiotics. Determination of nucleic acids is effective for both specific DNA in lysates and mRNA in transcripts. The method is also characterized by high selectivity for single-nucleotide polymorphism discrimination. The proposed principle of digital quantification is a perspective for studying the mechanisms of bacterial antibiotic resistance and bacterial response to drugs.


Asunto(s)
Oro , Nanopartículas del Metal , Antibacterianos , Bacterias/genética , Biotina , ADN , Oligonucleótidos , Silicio , beta-Lactamasas
3.
J Phys Chem Lett ; 13(14): 3165-3172, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35373560

RESUMEN

The superior rate capabilities of metal ion battery materials based on Prussian blue analogues (PBAs) are almost exclusively ascribed to the extremely fast solid-state ionic diffusion, which is possible due to structural voids and spacious three-dimensional channels in PBA structures. We performed a detailed electroanalytical study of alkali ion diffusivities in nanosized cation-rich and cation-poor PBAs obtained as particles or electrodeposited films in both aqueous and non-aqueous media, which resulted in a solid conclusion about the exceptionally slow ionic transport. We show that the impressive rate capability of PBA materials is determined solely by the small size of the primary particles of PBAs, while the apparent diffusion coefficients are 3-5 orders of magnitude lower than those reported in earlier studies. Our finding calls for a reconsideration of the apparent facility of ionic transport in PBA materials and deeper analysis of the charge carrier-host interactions in PBAs.

4.
Biosensors (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671837

RESUMEN

Gold nanoparticles (AuNPs) are popular labels for colorimetric detection of various analytes, involving proteins, nucleic acids, viruses, and whole cells because of their outstanding optical properties, inertness, and modification variability. In this work, we present an improved approach for enhancement of color intensity for DNA membrane microarrays based on seed-mediated growth of AuNP labels. Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microarrays. Then biotin is revealed by a streptavidin-AuNP conjugate followed by the detection of AuNPs. Optimization of seed-mediated enlargement of AuNPs by the reduction of tetrachloroauric acid with hydroxylamine made it possible to change the coloring of specific spots on the microarrays from pink to a more contrasting black with minor background staining. Mean size of the resulting AuNPs was four times larger than before the enhancement. Adjusting the pH of HAuCl4 solution to 3.5 and use of a large excess of hydroxylamine increased the signal/background ratio by several times. The method's applicability was demonstrated for quantification of a short oligonucleotide of 19 bases and full-length TEM-type ß-lactamase genes of 860 bp responsible for the development of bacterial resistance against ß-lactam antibiotics. Improved protocol for AuNP enlargement may be further transferred to any other membrane-based assays of nucleic acids with both instrumental and visual colorimetric detection.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Biotina , Nanopartículas del Metal/química , ADN/química , Análisis de Secuencia por Matrices de Oligonucleótidos
5.
Opt Lett ; 46(5): 1189-1192, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649689

RESUMEN

In this Letter, we report on the circular anisotropy of third-harmonic (TH) generation in an array of silicon nanowires (SiNWs) of approximately 100 nm in diameter tilted to the crystalline silicon substrate at an angle of 45°. Numerical simulations of the scattering at the fundamental and TH frequencies of circularly polarized light by a single SiNW and an ansatz structure composed of 13 SiNWs used as a geometrical approximation of the real SiNW array indicate asymmetric scattering diagrams, which is a manifestation of the photonic spin Hall effect mediated by the synthetic gauge field arising due to the special guided-like mode structure in each SiNW. Despite strong light scattering in the SiNW array, the experimentally measured TH signal demonstrated significant dependence on the polarization state of incident radiation and the SiNW array spacial orientation in regard to the wave vector direction.

6.
ChemSusChem ; 14(6): 1574-1585, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33512766

RESUMEN

Prussian blue analogues (PBAs) are commonly believed to reversibly insert divalent ions, such as calcium and magnesium, rendering them as perspective cathode materials for aqueous magnesium-ion batteries. In this study, the occurrence of Mg2+ insertion into nanosized PBA materials is shown to be a misconception and conclusive evidence is provided for the unfeasibility of this process for both cation-rich and cation-poor nickel, iron, and copper hexacyanoferrates. Based on structural, electrochemical, IR spectroscopy, and quartz crystal microbalance data, the charge compensation of PBA redox can be attributed to protons rather than to divalent ions in aqueous Mg2+ solution. The reversible insertion of protons involves complex lattice water rearrangements, whereas the presence of Mg2+ ion and Mg salt anion stabilizes the proton (de)insertion reaction through local pH effects and anion adsorption at the PBA surface. The obtained results draw attention to the design of proton-based batteries operating in environmentally benign aqueous solutions with low acidity.

7.
Sensors (Basel) ; 20(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872209

RESUMEN

Modern trends in optical bioimaging require novel nanoproducts combining high image contrast with efficient treatment capabilities. Silicon nanoparticles are a wide class of nanoobjects with tunable optical properties, which has potential as contrasting agents for fluorescence imaging and optical coherence tomography. In this paper we report on developing a novel technique for fabricating silicon nanoparticles by means of picosecond laser ablation of porous silicon films and silicon nanowire arrays in water and ethanol. Structural and optical properties of these particles were studied using scanning electron and atomic force microscopy, Raman scattering, spectrophotometry, fluorescence, and optical coherence tomography measurements. The essential features of the fabricated silicon nanoparticles are sizes smaller than 100 nm and crystalline phase presence. Effective fluorescence and light scattering of the laser-ablated silicon nanoparticles in the visible and near infrared ranges opens new prospects of their employment as contrasting agents in biophotonics, which was confirmed by pilot experiments on optical imaging.


Asunto(s)
Terapia por Láser , Nanopartículas , Nanocables , Porosidad , Silicio
8.
Beilstein J Nanotechnol ; 4: 330-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23766958

RESUMEN

BACKGROUND: An experimental and theoretical study of a silicon-nanowire field-effect transistor made of silicon on insulator by CMOS-compatible methods is presented. RESULTS: A maximum Nernstian sensitivity to pH change of 59 mV/pH was obtained experimentally. The maximum charge sensitivity of the sensor was estimated to be on the order of a thousandth of the electron charge in subthreshold mode. CONCLUSION: The sensitivity obtained for our sensor built in the CMOS-compatible top-down approach does not yield to the one of sensors built in bottom-up approaches. This provides a good background for the development of CMOS-compatible probes with primary signal processing on-chip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...