Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(12): 356, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947886

RESUMEN

Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Masculino , Embarazo , Femenino , Ratones , Animales , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/inducido químicamente , Índice Glucémico , Convulsiones , Hipocampo , Epilepsia/genética , Dieta
2.
Elife ; 102021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855580

RESUMEN

The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown. Here, we show that hyperactivity-induced REST/NRSF activation, triggers a homeostatic rearrangement of GABAergic inhibition, with increased frequency of miniature inhibitory postsynaptic currents (IPSCs) and amplitude of evoked IPSCs in mouse cultured hippocampal neurons. Notably, this effect is limited to inhibitory-onto-excitatory neuron synapses, whose density increases at somatic level and decreases in dendritic regions, demonstrating a complex target- and area-selectivity. The upscaling of perisomatic inhibition was occluded by TrkB receptor inhibition and resulted from a coordinated and sequential activation of the Npas4 and Bdnf gene programs. On the opposite, the downscaling of dendritic inhibition was REST-dependent, but BDNF-independent. The findings highlight the central role of REST/NRSF in the complex transcriptional responses aimed at rescuing physiological levels of network activity in front of the ever-changing environment.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Células Cultivadas , GABAérgicos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Homeostasis , Ratones Endogámicos C57BL , Neuronas/fisiología , Receptor trkB/metabolismo , Sinapsis/metabolismo , Factores de Transcripción
3.
Cell Rep ; 35(11): 109248, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133925

RESUMEN

Loss-of-function mutations in proline-rich transmembrane protein-2 (PRRT2) cause paroxysmal disorders associated with defective Ca2+ dependence of glutamatergic transmission. We find that either acute or constitutive PRRT2 deletion induces a significant decrease in the amplitude of evoked excitatory postsynaptic currents (eEPSCs) that is insensitive to extracellular Ca2+ and associated with a reduced contribution of P/Q-type Ca2+ channels to the EPSC amplitude. This synaptic phenotype parallels a decrease in somatic P/Q-type Ca2+ currents due to a decreased membrane targeting of the channel with unchanged total expression levels. Co-immunoprecipitation, pull-down assays, and proteomics reveal a specific and direct interaction of PRRT2 with P/Q-type Ca2+ channels. At presynaptic terminals lacking PRRT2, P/Q-type Ca2+ channels reduce their clustering at the active zone, with a corresponding decrease in the P/Q-dependent presynaptic Ca2+ signal. The data highlight the central role of PRRT2 in ensuring the physiological Ca2+ sensitivity of the release machinery at glutamatergic synapses.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Terminales Presinápticos/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Potenciales Postsinápticos Excitadores , Espacio Extracelular/química , Glutamatos/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Unión Proteica , Transmisión Sináptica
4.
J Neurosci ; 40(36): 6825-6841, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32747440

RESUMEN

Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca2+ dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both in vivo and in vitro LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes. Although we report that Toll-like receptor 4 is expressed in both excitatory and inhibitory mouse hippocampal neurons (both sexes), its chronic stimulation by LPS induces a selective increase in the excitatory synaptic strength, characterized by enhanced synchronous and asynchronous glutamate release mechanisms. This effect is accompanied by a change in short-term plasticity with decreased facilitation, decreased post-tetanic potentiation, and increased depression. Quantal analysis demonstrated that the effects of LPS on excitatory transmission are attributable to an increase in the probability of release associated with an overall increased expression of L-type voltage-gated Ca2+ channels that, at presynaptic terminals, abnormally contributes to evoked glutamate release. Overall, these changes contribute to the excitatory/inhibitory imbalance that scales up neuronal network activity under inflammatory conditions. These results provide new molecular clues for treating hyperexcitability of hippocampal circuits associated with neuroinflammation in epilepsy and other neurologic disorders.SIGNIFICANCE STATEMENT Neuroinflammation is thought to have a pathogenetic role in epilepsy, a disorder characterized by an imbalance between excitation/inhibition. Fine adjustment of network excitability and regulation of synaptic strength are both implicated in the homeostatic maintenance of physiological levels of neuronal activity. Here, we focused on the effects of chronic neuroinflammation induced by lipopolysaccharides on hippocampal glutamatergic and GABAergic synaptic transmission. Our results show that, on chronic stimulation with lipopolysaccharides, glutamatergic, but not GABAergic, neurons exhibit an enhanced synaptic strength and changes in short-term plasticity because of an increased glutamate release that results from an anomalous contribution of L-type Ca2+ channels to neurotransmitter release.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Epilepsia/metabolismo , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/fisiología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptor Toll-Like 4/metabolismo
5.
Mol Neurobiol ; 56(9): 6276-6292, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30746640

RESUMEN

Cultured hippocampal neurons represent the most widely used experimental substrate for in vitro electrophysiological studies. Nevertheless, in most cases, the nature of neuron under study is not identified as excitatory or inhibitory, or even worse, recorded neurons are considered as excitatory because of the paucity of GABAergic interneurons. Thus, the definition of reliable criteria able to guarantee an unequivocal identification of excitatory and inhibitory cultured hippocampal neurons is an unmet need. To reach this goal, we compared the electrophysiological properties and the localization and size of the axon initial segment (AIS) of cultured hippocampal neurons, taking advantage from GAD67-GFP knock-in mice, which expressing green fluorescent protein (GFP) in gamma-aminobutyric acid (GABA)-containing cells, allowed to unambiguously determine the precise nature of the neuron under study. Our results demonstrate that the passive electrophysiological properties, the localization and size of the AIS, and the shape and frequency of the action potential (AP) are not reliable to unequivocally identify neurons as excitatory or inhibitory. The only parameter, related to the shape of the single AP, showing minimal overlap between the sample-point distributions of the two neuronal subpopulations, was the AP half-width. However, the estimation of the AP failure ratio evoked by a short train of high-current steps applied at increasing frequency (40-140 Hz) resulted to be indisputably the safer and faster way to identify the excitatory or inhibitory nature of an unknown neuron. Our findings provide a precise framework for further electrophysiological investigations of in vitro hippocampal neurons.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/citología , Inhibición Neural/fisiología , Neuronas/fisiología , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Masculino , Ratones Endogámicos C57BL
6.
Brain ; 141(4): 1000-1016, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554219

RESUMEN

See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Segmento Inicial del Axón/fisiología , Diferenciación Celular , Corteza Cerebral/citología , Consanguinidad , Fibroblastos/patología , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Neuronas/citología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Hermanos
7.
Cell Rep ; 15(1): 117-131, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27052163

RESUMEN

Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.


Asunto(s)
Señalización del Calcio , Exocitosis , Proteínas de la Membrana/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...