Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Genes (Basel) ; 14(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37628636

RESUMEN

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Autofagia/genética , Mitocondrias/genética , Metabolismo Energético
2.
Cell Rep Med ; 4(6): 101056, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257447

RESUMEN

Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.


Asunto(s)
Aldehído Reductasa , Pez Cebra , Animales , Pez Cebra/metabolismo , Glicosilación , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Manosa/metabolismo , Metabolómica
3.
Mol Genet Metab ; 139(2): 107606, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224763

RESUMEN

BACKGROUND: Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS: We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS: Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION: Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS: Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fosfotransferasas (Fosfomutasas) , Trombosis , Humanos , Masculino , Glicosilación , Estudios Prospectivos , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Trombosis/epidemiología , Trombosis/genética , Fosfotransferasas (Fosfomutasas)/genética , Antitrombinas/uso terapéutico
4.
Transl Res ; 257: 1-14, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36709920

RESUMEN

Phosphoglucomutase 1 (PGM1) deficiency is recognized as the third most common N-linked congenital disorders of glycosylation (CDG) in humans. Affected individuals present with liver, musculoskeletal, endocrine, and coagulation symptoms; however, the most life-threatening complication is the early onset of dilated cardiomyopathy (DCM). Recently, we discovered that oral D-galactose supplementation improved liver disease, endocrine, and coagulation abnormalities, but does not alleviate the fatal cardiomyopathy and the associated myopathy. Here we report on left ventricular ejection fraction (LVEF) in 6 individuals with PGM1-CDG. LVEF was pathologically low in most of these individuals and varied between 10% and 65%. To study the pathobiology of the cardiac disease observed in PGM1-CDG, we constructed a novel cardiomyocyte-specific conditional Pgm2 gene (mouse ortholog of human PGM1) knockout (Pgm2 cKO) mouse model. Echocardiography studies corroborated a DCM phenotype with significantly reduced ejection fraction and left ventricular dilation similar to those seen in individuals with PGM1-CDG. Histological studies demonstrated excess glycogen accumulation and fibrosis, while ultrastructural analysis revealed Z-disk disarray and swollen/fragmented mitochondria, which was similar to the ultrastructural pathology in the cardiac explant of an individual with PGM1-CDG. In addition, we found decreased mitochondrial function in the heart of KO mice. Transcriptomic analysis of hearts from mutant mice demonstrated a gene signature of DCM. Although proteomics revealed only mild changes in global protein expression in left ventricular tissue of mutant mice, a glycoproteomic analysis unveiled broad glycosylation changes with significant alterations in sarcolemmal proteins including different subunits of laminin-211, which was confirmed by immunoblot analyses. Finally, augmentation of PGM1 in KO mice via AAV9-PGM1 gene replacement therapy prevented and halted the progression of the DCM phenotype.


Asunto(s)
Cardiomiopatía Dilatada , Enfermedad del Almacenamiento de Glucógeno , Humanos , Animales , Ratones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/terapia , Volumen Sistólico , Función Ventricular Izquierda
5.
J Inherit Metab Dis ; 45(6): 1039-1047, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36047296

RESUMEN

TRIT1 defect is a rare, autosomal-recessive disorder of transcription, initially described as a condition with developmental delay, myoclonic seizures, and abnormal mitochondrial function. Currently, only 13 patients have been reported. We reviewed the genetic, clinical, and metabolic aspects of the disease in all known patients, including two novel, unrelated TRIT1 cases with abnormalities in oxidative phosphorylation complexes I and IV in fibroblasts. Taken together the features of all 15 patients, TRIT1 defect could be identified as a potentially recognizable syndrome including myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and variable microcephaly, with normal lactate levels. Half of the patients had oxidative phosphorylation complex measurements and had multiple complex abnormalities.


Asunto(s)
Transferasas Alquil y Aril , Epilepsias Mioclónicas , Trastornos del Desarrollo del Lenguaje , Estrabismo , Humanos , Epilepsias Mioclónicas/genética , Fenotipo , Espasticidad Muscular , Lactatos , Transferasas Alquil y Aril/genética
6.
J Vis Exp ; (185)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35969057

RESUMEN

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition that precipitates in ~10% of individuals exposed to a traumatic event (TE). Symptoms include recurrent and intrusive thoughts, sleep disturbance, hypervigilance, exaggerated startle, and reckless or destructive behavior. Given the complex and heterogeneous nature of the disease, animal models for PTSD-like symptomatology are of increasing interest to the field of PTSD research. Because resilience to PTSD-like symptomatology is an important epidemiologic aspect of PTSD, animal models that resolve vulnerable and resilient animals are of particular value. Due to the complex nature of the PTSD phenotype and the potential overlaps between PTSD-like behavior and behaviors associated with other stress-induced psychopathologies such as anxiety or depression, animal models that utilize multiple readouts for PTSD-like behavior are also of increasing value. We utilize a paradigm developed by Lebow et al. 2012 for the induction and identification of PTSD-like symptomatology in mice. This paradigm utilizes inescapable electric foot shock, administered in two decontextualized sessions over two consecutive days. Stressed mice perform four behavioral tests - dark/light transfer, marble burying, acoustic startle, and home cage activity - to generate five behavioral readouts of PTSD-like behavior: % risk assessment (%RA), % marbles buried (%MB), % prepulse inhibition (%PPI), latency to peak startle amplitude (LPSA), and % light phase activity (%LPA). PTSD-like symptomatology is characterized by decreased %RA, increased %MB, decreased %PPI, decreased LPSA, and increased %LPA. The 20% of animals displaying the most PTSD-like behavior in each test are awarded a certain number of points depending on the test, and animals scoring sufficient points are designated as PTSD-like, while animals scoring no points are designated PTSD-resilient. This paradigm identifies PTSD-like behavior in ~15% of animals, a rate comparable to that observed in humans. This protocol represents a robust and reproducible paradigm for the induction of PTSD-like behavior in mice.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Ansiedad/etiología , Conducta Animal , Modelos Animales de Enfermedad , Humanos , Ratones , Actividad Motora , Inhibición Prepulso , Trastornos por Estrés Postraumático/etiología , Estrés Psicológico/complicaciones
7.
Genet Med ; 24(4): 894-904, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35042660

RESUMEN

PURPOSE: TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS: Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS: All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION: We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.


Asunto(s)
Trastornos Congénitos de Glicosilación , Discapacidad Intelectual , Microcefalia , Trastornos Congénitos de Glicosilación/genética , Glicosilación , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación Missense
8.
Ann Neurol ; 90(6): 887-900, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34652821

RESUMEN

OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 20219999:n/a-n/a.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Inhibidores Enzimáticos/uso terapéutico , Fosfotransferasas (Fosfomutasas)/deficiencia , Rodanina/análogos & derivados , Sorbitol/orina , Tiazolidinas/uso terapéutico , Adolescente , Adulto , Anciano , Biomarcadores/orina , Niño , Preescolar , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/orina , Femenino , Glicosilación , Humanos , Lactante , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Fosfotransferasas (Fosfomutasas)/orina , Pronóstico , Rodanina/uso terapéutico , Adulto Joven
9.
Neurobiol Stress ; 14: 100300, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33604421

RESUMEN

Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.

10.
Transl Psychiatry ; 10(1): 176, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32488052

RESUMEN

Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Animales , Encéfalo/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Estrés Fisiológico
11.
Eur J Med Genet ; 63(7): 103941, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32407885

RESUMEN

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a recently described autosomal dominant syndrome of developmental delay, cortical vision loss with optic nerve atrophy, epilepsy, and autism spectrum disorder. Due to its many overlapping features with congenital disorders of glycosylation (CDG), the differential diagnosis between these disorders may be difficult and relies on molecular genetic testing. We report on a 31-year-old female initially diagnosed with ALG6-CDG based on glycosylation abnormalities on transferrin isoelectrofocusing and targeted genetic testing, and later diagnosed with BBSOAS by whole-exome sequencing (WES). Functional studies on cultured fibroblasts including Western blotting and RT-qPCR, as well as mass spectrometry of glycosylated transferrin and MALDI-TOF glycan analysis in serum, demonstrated normal glycosylation in this patient. In this report, we extend the phenotype of BBSOAS with ataxia and protein-losing enteropathy. This case is illustrative of the utility of whole exome sequencing in the diagnostic odyssey, and the potential pitfalls of relying on focused genetic testing results for diagnosis of conditions with complex overlapping phenotypes.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Glucosiltransferasas/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Atrofias Ópticas Hereditarias/genética , Fenotipo , Adulto , Ataxia/genética , Trastorno del Espectro Autista/genética , Epilepsia/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Glicosilación , Humanos , Discapacidad Intelectual/diagnóstico , Mutación , Atrofias Ópticas Hereditarias/diagnóstico , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Secuenciación del Exoma
12.
Brain Behav Immun Health ; 6: 100104, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34589865

RESUMEN

The impact of trauma on mental health is complex with poorly understood underlying mechanisms. Mitochondrial dysfunction is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We hypothesized that defects in mitochondrial energy metabolism in the cerebellum, an emerging region of interest in the pathobiology of mood disorders, would be associated with PTSD-like symptomatology, and that PTSD-like symptomatology would correlate with the activities of the mitochondrial electron transport chain (mtETC) and fatty acid oxidation (FAO) pathways. We assayed mitochondrial energy metabolism and fatty acid profiling using targeted metabolomics in mice exposed to a recently developed paradigm for PTSD-induction. 48 wild type male FVB.129P2 mice were exposed to a trauma, and PTSD-like and resilient animals were identified using behavioral profiling. Mice displaying PTSD-like symptomatology displayed reduced mtETC complex activities in the cerebellum, and cerebellar mtETC complex activity negatively correlated with PTSD-like symptomatology. PTSD-like animals also displayed fatty acid profiles consistent with FAO dysfunction in both cerebellum and plasma. Machine learning analysis of all biochemical measures in this cohort of animals also identified plasma acetylcarnitine, along with reduced activity of cerebellar complex I and IV as well as succinate:cytochrome c oxidoreductase as state predictive discriminators of PTSD-symptomatology. Our data also suggest that trauma-induced impaired mtETC function in the cerebellum and concomitant impaired multi-system fatty acid oxidation are candidate drivers of PTSD-like behavior in mice. These bioenergetic and metabolic changes may offer an informative window into the underlying biology and highlight novel potential targets for diagnostics and therapeutic interventions in PTSD.

13.
Dis Model Mech ; 12(11)2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636082

RESUMEN

Phosphomannomutase 2 deficiency, or PMM2-CDG, is the most common congenital disorder of glycosylation and affects over 1000 patients globally. There are no approved drugs that treat the symptoms or root cause of PMM2-CDG. To identify clinically actionable compounds that boost human PMM2 enzyme function, we performed a multispecies drug repurposing screen using a novel worm model of PMM2-CDG, followed by PMM2 enzyme functional studies in PMM2-CDG patient fibroblasts. Drug repurposing candidates from this study, and drug repurposing candidates from a previously published study using yeast models of PMM2-CDG, were tested for their effect on human PMM2 enzyme activity in PMM2-CDG fibroblasts. Of the 20 repurposing candidates discovered in the worm-based phenotypic screen, 12 were plant-based polyphenols. Insights from structure-activity relationships revealed epalrestat, the only antidiabetic aldose reductase inhibitor approved for use in humans, as a first-in-class PMM2 enzyme activator. Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. We demonstrate that epalrestat is the first small molecule activator of PMM2 enzyme activity with the potential to treat peripheral neuropathy and correct the underlying enzyme deficiency in a majority of pediatric and adult PMM2-CDG patients.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Reposicionamiento de Medicamentos , Fosfotransferasas (Fosfomutasas)/deficiencia , Rodanina/análogos & derivados , Tiazolidinas/uso terapéutico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Fibroblastos/efectos de los fármacos , Glicosilación , Humanos , Nematodos , Fosfotransferasas (Fosfomutasas)/genética , Polifenoles/farmacología , Rodanina/uso terapéutico
14.
J Inherit Metab Dis ; 41(4): 585-596, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29594645

RESUMEN

Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.


Asunto(s)
Mitocondrias/patología , Trastornos por Estrés Postraumático/genética , Alostasis , Miedo , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Hidrocortisona , Inflamación , Acontecimientos que Cambian la Vida , Plasticidad Neuronal , Trastornos por Estrés Postraumático/terapia
15.
Genet Med ; 19(11): 1226-1235, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28617415

RESUMEN

PurposePhosphoglucomutase-1 deficiency is a subtype of congenital disorders of glycosylation (PGM1-CDG). Previous casereports in PGM1-CDG patients receiving oral D-galactose (D-gal) showed clinical improvement. So far no systematic in vitro and clinical studies have assessed safety and benefits of D-gal supplementation. In a prospective pilot study, we evaluated the effects of oral D-gal in nine patients.MethodsD-gal supplementation was increased to 1.5 g/kg/day (maximum 50 g/day) in three increments over 18 weeks. Laboratory studies were performed before and during treatment to monitor safety and effect on serum transferrin-glycosylation, coagulation, and liver and endocrine function. Additionally, the effect of D-gal on cellular glycosylation was characterized in vitro.ResultsEight patients were compliant with D-gal supplementation. No adverse effects were reported. Abnormal baseline results (alanine transaminase, aspartate transaminase, activated partial thromboplastin time) improved or normalized already using 1 g/kg/day D-gal. Antithrombin-III levels and transferrin-glycosylation showed significant improvement, and increase in galactosylation and whole glycan content. In vitro studies before treatment showed N-glycan hyposialylation, altered O-linked glycans, abnormal lipid-linked oligosaccharide profile, and abnormal nucleotide sugars in patient fibroblasts. Most cellular abnormalities improved or normalized following D-gal treatment. D-gal increased both UDP-Glc and UDP-Gal levels and improved lipid-linked oligosaccharide fractions in concert with improved glycosylation in PGM1-CDG.ConclusionOral D-gal supplementation is a safe and effective treatment for PGM1-CDG in this pilot study. Transferrin glycosylation and ATIII levels were useful trial end points. Larger, longer-duration trials are ongoing.


Asunto(s)
Galactosa/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Administración Oral , Adolescente , Coagulación Sanguínea , Glucemia/metabolismo , Niño , Preescolar , Creatina Quinasa/sangre , Relación Dosis-Respuesta a Droga , Femenino , Galactosa/administración & dosificación , Galactosa/efectos adversos , Glicoproteínas/metabolismo , Humanos , Lactante , Masculino , Fosfoglucomutasa/metabolismo , Proyectos Piloto , Estudios Prospectivos , Piel/citología , Piel/metabolismo , Transferrina/metabolismo , Adulto Joven
16.
Dev Biol ; 409(2): 382-91, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26658320

RESUMEN

Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/ß-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function.


Asunto(s)
Nefronas/citología , Receptores de Superficie Celular/metabolismo , Células Madre/citología , Animales , Muerte Celular , Proliferación Celular , Epitelio/embriología , Eliminación de Gen , Dosificación de Gen , Marcación de Gen , Proteínas de Homeodominio/metabolismo , Riñón/citología , Riñón/embriología , Riñón/fisiopatología , Enfermedades Renales Quísticas/complicaciones , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/fisiopatología , Mesodermo/citología , Mesodermo/embriología , Ratones , Organogénesis , Podocitos/metabolismo , Podocitos/ultraestructura , Proteinuria/complicaciones , Proteinuria/fisiopatología , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Receptor de Prorenina
17.
PLoS One ; 8(5): e63835, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704941

RESUMEN

The role of the prorenin receptor (PRR) in the regulation of ureteric bud (UB) branching morphogenesis is unknown. Here, we investigated whether PRR acts specifically in the UB to regulate UB branching, kidney development and function. We demonstrate that embryonic (E) day E13.5 mouse metanephroi, isolated intact E11.5 UBs and cultured UB cells express PRR mRNA. To study its role in UB development, we conditionally ablated PRR in the developing UB (PRR (UB-/-)) using Hoxb7 (Cre) mice. On E12.5, PRR (UB-/-) mice had decreased UB branching and increased UB cell apoptosis. These defects were associated with decreased expression of Ret, Wnt11, Etv4/Etv5, and reduced phosphorylation of Erk1/2 in the UB. On E18.5, mutants had marked kidney hypoplasia, widespread apoptosis of medullary collecting duct cells and decreased expression of Foxi1, AE1 and H(+)-ATPase α4 mRNA. Ultimately, they developed occasional small cysts in medullary collecting ducts and had decreased nephron number. To test the functional consequences of these alterations, we determined the ability of PRR (UB-/-) mice to acidify and concentrate the urine on postnatal (P) day P30. PRR (UB-/-) mice were polyuric, had lower urine osmolality and a higher urine pH following 48 hours of acidic loading with NH4Cl. Taken together, these data show that PRR present in the UB epithelia performs essential functions during UB branching morphogenesis and collecting duct development via control of Ret/Wnt11 pathway gene expression, UB cell survival, activation of Erk1/2, terminal differentiation and function of collecting duct cells needed for maintaining adequate water and acid-base homeostasis. We propose that mutations in PRR could possibly cause renal hypodysplasia and renal tubular acidosis in humans.


Asunto(s)
Eliminación de Gen , Riñón/anomalías , Riñón/embriología , Receptores de Superficie Celular/genética , Uréter/embriología , Ácidos/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Epitelio/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Concentración de Iones de Hidrógeno , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/embriología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Pruebas de Función Renal , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/patología , Ratones , Concentración Osmolar , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-ret/metabolismo , ATPasas de Translocación de Protón/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Uréter/anomalías , Uréter/metabolismo , Proteínas Wnt/metabolismo , Receptor de Prorenina
18.
Pediatr Res ; 74(1): 5-10, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23575876

RESUMEN

BACKGROUND: This study examined temporal expression of the (pro)renin receptor ((P)RR), during renal, heart, lung, and brain organogenesis in the mouse. METHODS: (P)RR expression was determined by quantitative reverse-transcription PCR, western blotting, and immunohistochemistry. RESULTS: Brain, kidney, and lung (P)RR mRNA levels increased progressively during gestation and peak on postnatal day (P)10. (P)RR protein contents were high during gestation in all organs studied and declined with maturation. Brain (P)RR was expressed most prominently in the ependymal lining of the ventricles. In the embryonic day (E)16.5 and E18.5 metanephros, (P)RR was present in the ureteric bud and ureteric bud-derived collecting ducts. In the fetal heart, (P)RR was expressed diffusely in the myocardium, whereas pulmonary (P)RR was detected at highest levels in the epithelium of branching airways. Treatment of newborn kidneys with the angiotensin (Ang) II type 1 receptor (AT1R) antagonist candesartan increased (P)RR mRNA levels. CONCLUSION: (P)RR gene and protein expressions in the brain, kidney, heart, and lung are developmentally regulated in a tissue-specific manner. Endogenous Ang II, acting via the AT1R, exerts a negative feedback on (P)RR in the newborn kidney. These findings suggest that high (P)RR protein levels observed during gestation may play a role in brain, kidney, heart, and lung organogenesis.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Femenino , Masculino , Ratones , Receptor de Prorenina
19.
Am J Physiol Renal Physiol ; 302(9): F1112-20, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22301625

RESUMEN

We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT(1) receptor (AT(1)R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT(1)R-null mice. Papillas were dissected from Hoxb7(GFP+) or AGT(+/+), (+/-), (-/-) mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10(-5) M), or the specific AT(1)R antagonist candesartan (10(-6) M) for 24 h. Percent reduction in papillary length was attenuated in AGT(+/+) and in AGT(+/-) compared with AGT(-/-) (-18.4 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, -22.8 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7(GFP+) (-1.5 ± 0.3 vs. -10.0 ± 1.4%, P < 0.05) or AGT(+/+), (+/-), and (-/-) papillas (-12.8 ± 0.7 vs. -18.4 ± 1.3%, P < 0.05, -16.8 ± 1.1 vs. -23 ± 1.2%, P < 0.05; -26.2 ± 1.6 vs. -32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7(GFP+) papillas in the presence of the AT(1)R antagonist candesartan was higher compared with control (-24.3 ± 2.1 vs. -10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT(1)R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT(1)R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, ß-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.


Asunto(s)
Angiotensina II/farmacología , Animales Recién Nacidos/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/crecimiento & desarrollo , Angiotensina II/metabolismo , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Compuestos de Bifenilo , Proliferación Celular/efectos de los fármacos , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Médula Renal/citología , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Morfogénesis/efectos de los fármacos , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Tetrazoles/farmacología
20.
Pediatr Res ; 71(1): 13-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22289845

RESUMEN

INTRODUCTION: This study examined the temporal expression of angiotensin (Ang)-converting enzyme 2 (ACE2) during renal, heart, lung, and brain organogenesis in the mouse. RESULTS: We demonstrate that kidney ACE2 mRNA levels are low on embryonic day (E) 12.5, increase fourfold during development, and decline in adulthood. In extrarenal tissues, ACE2 mRNA levels are also low during early gestation, increase in perinatal period, and peak in adulthood. The lung shows the highest age-related increase in ACE2 mRNA levels followed by the brain, kidney, and heart. ACE2 protein levels and enzymatic activity are high in all organs studied during gestation and decline postnatally. Ang II decreases ACE2 mRNA levels and enzymatic activity in kidneys grown ex vivo. These effects of Ang II are blocked by the specific Ang II AT(1) receptor (AT(1)R) antagonist candesartan, but not by the AT(2) receptor (AT(2)R) antagonist PD123319. DISCUSSION: We conclude that ACE2 gene and protein expression and enzymatic activity are developmentally regulated in a tissue-specific manner. Ang II, acting through AT(1)R, exerts a negative feedback on ACE2 during kidney development. We postulate that relatively high ACE2 protein levels and enzymatic activity observed during gestation may play a role in kidney, lung, brain, and heart organogenesis.


Asunto(s)
Organogénesis/fisiología , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Encéfalo/citología , Encéfalo/enzimología , Encéfalo/fisiología , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Corazón/fisiología , Riñón/citología , Riñón/enzimología , Riñón/fisiología , Pulmón/citología , Pulmón/enzimología , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/citología , Miocardio/enzimología , Peptidil-Dipeptidasa A/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...