Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ecol Evol ; 12(3): e8583, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342598

RESUMEN

Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome-like evolution and its drivers.

3.
AoB Plants ; 14(1): plab080, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35079331

RESUMEN

Variation in mating systems is prevalent throughout angiosperms, with many transitions between outcrossing and selfing above and below the species level. This study documents a new case of an intraspecific breakdown of self-incompatibility in a wild relative of tomatillo, Physalis acutifolia. We used controlled greenhouse crosses to identify self-incompatible (SI) and self-compatible (SC) individuals grown from seed sampled across seven sites across Arizona and New Mexico. We measured 14 flower and fruit traits to test for trait variation associated with mating system. We also quantified pollen tube growth in vivo and tested for the presence of the S-RNase proteins in SI and SC styles. We found that seed from six of the seven sites produced SI individuals that terminated self-pollen tubes in the style and showed detectable S-RNase expression. By contrast, seed from one Arizona site produced SC individuals with no S-RNase expression. These SC individuals displayed typical selfing-syndrome traits such as smaller corollas, reduced stigma-anther distances, and a smaller pollen-ovule ratio. We also found plasticity in self-incompatibility as most of the SI individuals became SC and lost S-RNase expression roughly after 6 months in the greenhouse. While fixed differences in mating systems are known among the SI wild species and the often SC domesticated tomatillos, our study is the first to demonstrate intraspecific variation in natural populations as well as variation in SI over an individual's lifespan.

4.
Plant Physiol ; 172(2): 650-660, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443602

RESUMEN

Plant disease symptoms exhibit complex spatial and temporal patterns that are challenging to quantify. Image-based phenotyping approaches enable multidimensional characterization of host-microbe interactions and are well suited to capture spatial and temporal data that are key to understanding disease progression. We applied image-based methods to investigate cassava bacterial blight, which is caused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam). We generated Xam strains in which individual predicted type III effector (T3E) genes were mutated and applied multiple imaging approaches to investigate the role of these proteins in bacterial virulence. Specifically, we quantified bacterial populations, water-soaking disease symptoms, and pathogen spread from the site of inoculation over time for strains with mutations in avrBs2, xopX, and xopK as compared to wild-type Xam ∆avrBs2 and ∆xopX both showed reduced growth in planta and delayed spread through the vasculature system of cassava. ∆avrBs2 exhibited reduced water-soaking symptoms at the site of inoculation. In contrast, ∆xopK exhibited enhanced induction of disease symptoms at the site of inoculation but reduced spread through the vasculature. Our results highlight the importance of adopting a multipronged approach to plant disease phenotyping to more fully understand the roles of T3Es in virulence. Finally, we demonstrate that the approaches used in this study can be extended to many host-microbe systems and increase the dimensions of phenotype that can be explored.


Asunto(s)
Mediciones Luminiscentes/métodos , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/microbiología , Plantas/microbiología , Xanthomonas/patogenicidad , Brassica/microbiología , Capsicum/microbiología , Interacciones Huésped-Patógeno , Solanum lycopersicum/microbiología , Manihot/microbiología , Mutación , Fenotipo , Hojas de la Planta/microbiología , Plantas/clasificación , Reproducibilidad de los Resultados , Análisis Espacial , Proteínas Virales/genética , Virulencia/genética , Xanthomonas/clasificación , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...