Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 128(6): 767-786, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34156430

RESUMEN

BACKGROUND AND AIMS: Many recent studies emphasize that mixed species is a promising silvicultural option for sustainable ecosystem management under uncertain and risky future environmental conditions. However, compared with monocultures, knowledge of mixed stands is still rather fragmentary. This comprehensive study analysed the most common Central European tree species combinations to determine the extent to which mono-layered species mixing (1) can increase stand productivity and stem diameter growth, (2) increase stand density or growth efficiency, and (3) reduce competition and attenuate the relationship between stand density and stem diameter growth compared with mono-specific stands. METHODS: The study was based on 63 long-term experimental plots in Germany with repeated spatially explicit stand inventories. They covered mono-specific and mixed species stands of Norway spruce (Picea abies), silver fir (Abies alba), Scots pine (Pinus sylvestris), European beech (Fagus sylvatica), sessile oak (Quercus petraea), European ash (Fraxinus excelsior) and sycamore maple (Acer pseudoplatanus). Based on spatially explicit measurement, we quantified for each tree the intra- or inter-specific neighbourhood, local stand density and growth. We applied mixed models to analyse how inter-specific neighbourhoods modify stand productivity, stand density, growth efficiency, individual tree growth and the trade-off between individual tree growth and stand productivity. KEY RESULTS: We found stand productivity gains of 7-53 % of mixed versus mono-specific stands continuing over the entire rotation. All mixtures achieved a 3-36 % higher leaf area index until advanced stand age. Stem diameter growth increased by up to 31 % in mixed stands. The growth efficiency of the leaf area was up to 31 % higher, except in mixtures of sessile oak and European beech. The trade-off between stem diameter growth and stand productivity was attenuated by the mixture. CONCLUSIONS: The increased productivity was mainly based on a density increase in the case of Norway spruce/silver fir/European beech and sessile oak/European beech and it was based on a more efficient resource use given the same stand density in the case of Scots pine/European beech and European ash/sycamore maple. In the other species assemblages the increased productivity was based on a combination of density and efficiency increase. We hypothesize that the density effect may be site-invariant and mainly depends on the structural species complementarity. The efficiency increase of growth may depend on the growth-limiting factor that is remedied by mixture and thus be co-determined by the site conditions. For forest management, the results indicate increased stand and tree size growth by species mixing. For the common mixtures examined in this study the results show that thinning for the acceleration of stem growth requires less density reduction and causes less stand growth losses than in monocultures. We discuss the consequences of our findings for silvicultural prescriptions for mixed-species stands.


Asunto(s)
Ecosistema , Fagus , Picea , Árboles
2.
Sci Total Environ ; 676: 651-664, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31051370

RESUMEN

Global processes of urban growth lead to severe environmental impacts such as temperature increase with an intensification of the urban heat island effect, and hydrological changes with far reaching consequences for plant growth and human health and well-being. Urban trees can help to mitigate the negative effects of climate change by providing ecosystem services such as carbon storage, shading, cooling by transpiration or reduction of rainwater runoff. The extent of each ecosystem service is closely linked with the tree species as well as with a tree's age, size, structure and vitality. To evaluate the ecosystem services of urban trees, the process-based growth model CityTree was developed which is able to estimate not only tree growth but also the species-specific ecosystem services including carbon storage, transpiration and runoff, shading, and cooling by transpiration. The model was parametrized for the species small-leaved lime (Tilia cordata), robinia (Robinia pseudoacacia), plane (Platanus×acerifolia) and horse chestnut (Aesculus hippocastanum). The model validation for tree growth (stem diameter increment, coefficient of correlation=0.76) as well as for the water balance (transpiration, coefficient of correlation=0.92) seems plausible and realistic. Tree growth and ecosystem services were simulated and analyzed for Central European cities both under current climate conditions and for the future climate scenarios. The simulations revealed that urban trees can significantly improve the urban climate and mitigate climate change effects. The quantity of the improvements depends on tree species and tree size as well as on the specific site conditions. Such simulation scenarios can be a proper basis for planning options to mitigate urban climate changes in individual cities.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Árboles/crecimiento & desarrollo
3.
Biol Lett ; 14(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618520

RESUMEN

While it is widely acknowledged that forest biodiversity contributes to climate change mitigation through improved carbon sequestration, conversely how climate affects tree species diversity-forest productivity relationships is still poorly understood. We combined the results of long-term experiments where forest mixtures and corresponding monocultures were compared on the same site to estimate the yield of mixed-species stands at a global scale, and its response to climatic factors. We found positive mixture effects on productivity using a meta-analysis of 126 case studies established at 60 sites spread across five continents. Overall, the productivity of mixed-species forests was 15% greater than the average of their component monocultures, and not statistically lower than the productivity of the best component monoculture. Productivity gains in mixed-species stands were not affected by tree age or stand species composition but significantly increased with local precipitation. The results should guide better use of tree species combinations in managed forests and suggest that increased drought severity under climate change might reduce the atmospheric carbon sequestration capacity of natural forests.


Asunto(s)
Biodiversidad , Clima , Bosques , Biomasa , Secuestro de Carbono/fisiología , Cambio Climático
4.
Plant Biol (Stuttg) ; 19(5): 709-719, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28644576

RESUMEN

Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought.


Asunto(s)
Sequías , Fagus/crecimiento & desarrollo , Fagus/fisiología , Picea/crecimiento & desarrollo , Picea/fisiología , Cambio Climático , Europa (Continente)
5.
Plant Biol (Stuttg) ; 16(1): 166-76, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23581485

RESUMEN

Facilitation, reduced competition or increased competition can arise in mixed stands and become essential to the performance of these stands when compared to pure stands. Facilitation and over-yielding are widely held to prevail on poor sites, whereas neutral interactions or competition, leading to under-yielding of mixed versus pure stands, can occur on fertile sites. While previous studies have focused on the spatial variation of mixing effects, we examine the temporal variation of facilitation and competition and its effect on growth. The study is based on tree ring measurement on cores from increment borings from 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in southern Germany, half of which were in pure stands and half in adjacent mixed stands. Mean basal area growth indices were calculated from tree ring measurements for pure and mixed stands for every species and site. The temporal variation, with positive correlations between species-specific growth indices during periods of low growth and neutral or negative correlations during periods of high growth, is more distinct in mixed than in neighbouring pure stands. We provide evidence that years with low growth trigger over-yielding of trees in mixed as opposed to pure stands, while years with high growth lead to under-yielding. We discuss the relevance of the results in terms of advancing our understanding and modelling of mixed stands, extension of the stress gradient hypothesis, and the performance of mixed versus pure stands in the face of climate change.


Asunto(s)
Biodiversidad , Bosques , Árboles/fisiología , Alemania , Árboles/clasificación , Árboles/crecimiento & desarrollo
6.
Plant Biol (Stuttg) ; 15(3): 483-95, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23062025

RESUMEN

While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far-reaching implications that these differences in stress response under intra- and inter-specific environments have for forest ecosystem dynamics and management under climate change.


Asunto(s)
Sequías , Árboles/fisiología , Ecosistema , Fagus/fisiología , Alemania , Picea/fisiología , Quercus/fisiología , Especificidad de la Especie , Estrés Fisiológico
7.
Environ Pollut ; 158(8): 2527-32, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20570421

RESUMEN

Ground-level ozone (O(3)) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O(3)-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O(3) exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O(3) levels. Elevated O(3) significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O(3) responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O(3) can substantially mitigate the C sequestration of forests in view of climate change.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Carbono/metabolismo , Fagus/metabolismo , Ozono/toxicidad , Árboles/metabolismo , Contaminantes Atmosféricos/metabolismo , Alemania , Fotosíntesis/efectos de los fármacos
8.
Environ Pollut ; 158(6): 1990-2006, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20133031

RESUMEN

Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Betula/efectos de los fármacos , Cambio Climático , Agricultura Forestal/métodos , Populus/efectos de los fármacos , Contaminantes Atmosféricos/análisis , Betula/crecimiento & desarrollo , Populus/crecimiento & desarrollo
9.
Ann Bot ; 101(8): 1065-87, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17954471

RESUMEN

BACKGROUND: Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. SCOPE: Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. CONCLUSIONS: In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model, covering ecological, production and landscape issues equally well.


Asunto(s)
Ecosistema , Agricultura Forestal , Modelos Teóricos , Monitoreo del Ambiente , Europa (Continente) , Árboles/crecimiento & desarrollo
10.
Plant Biol (Stuttg) ; 7(6): 560-80, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16388460

RESUMEN

Regulation of resource allocation in plants is the key to integrate understanding of metabolism and resource flux across the whole plant. The challenge is to understand trade-offs as plants balance allocation between different and conflicting demands, e.g., for staying competitive with neighbours and ensuring defence against parasites. Related hypothesis evaluation can, however, produce equivocal results. Overcoming deficits in understanding underlying mechanisms is achieved through integrated experimentation and modelling the various spatio-temporal scaling levels, from genetic control and cell metabolism towards resource flux at the stand level. An integrated, interdisciplinary research concept on herbaceous and woody plants and its outcome to date are used, while drawing attention to currently available knowledge. This assessment is based on resource allocation as driven through plant-pathogen and plant-mycorrhizosphere interaction, as well as competition with neighbouring plants in stands, conceiving such biotic interactions as a "unity" in the control of allocation. Biotic interaction may diminish or foster effects of abiotic stress on allocation, as changes in allocation do not necessarily result from metabolic re-adjustment but may obey allometric rules during ontogeny. Focus is required on host-pathogen interaction under variable resource supply and disturbance, including effects of competition and mycorrhization. Cost/benefit relationships in balancing resource investments versus gains turned out to be fundamental in quantifying competitiveness when related to the space, which is subject to competitive resource exploitation. A space-related view of defence as a form of prevention of decline in competitiveness may promote conversion of resource turnover across the different kinds of biotic interaction, given their capacity in jointly controlling whole plant resource allocation.


Asunto(s)
Metabolismo Energético , Plantas/metabolismo , Plantas/microbiología , Interacciones Huésped-Parásitos , Agua/metabolismo
11.
Plant Biol (Stuttg) ; 7(6): 611-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16388464

RESUMEN

This study attempted to detect the impact of ozone on adult trees of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) in an experimental mixed stand in Southern Bavaria, Germany. The aim was to examine whether there is a decrease in growth when trees are exposed to higher than atmospheric concentrations of ozone. This exposure was put into effect using a free-air fumigation system at tree crown level. Growth analysis was carried out on a group of 47 spruce and 36 beech trees, where radial stem increment at breast height - a sensitive index for stress - was measured. The ozone monitoring system allowed values to be obtained for the accumulated ozone exposure (SUM00) of each individual tree, so that their radial increment over three years could be correlated with the corresponding ozone exposure for the same time period. Correlation and regression analysis were then carried out to test the influence of ozone on diameter increment. In both spruce and beech, the initial stem diameter was the most influential factor on radial increment in the following year. A linear model was applied, including the diameter of the preceding year and the ozone exposure of the current year as predicting factors. For spruce trees, a significant negative influence of ozone exposure was found. In contrast, no significant ozone effect on diameter increment of beech was detected. The effect of ozone stress on a large spruce tree can lead to a decrease in potential radial increment of 22 %. The results are discussed in relation to other stress factors such as drought and lack of light.


Asunto(s)
Fagus/efectos de los fármacos , Fagus/crecimiento & desarrollo , Ozono/farmacología , Picea/efectos de los fármacos , Picea/crecimiento & desarrollo , Árboles/efectos de los fármacos , Árboles/crecimiento & desarrollo
12.
Plant Biol (Stuttg) ; 7(6): 628-39, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16388466

RESUMEN

In pure and mixed stands of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.


Asunto(s)
Ecosistema , Fagus/anatomía & histología , Fagus/crecimiento & desarrollo , Picea/anatomía & histología , Picea/crecimiento & desarrollo , Densidad de Población , Especificidad de la Especie
13.
Int J Biometeorol ; 48(3): 109-18, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14564495

RESUMEN

A phenology model for estimating the timings of bud burst--one of the most influential phenological phases for the simulation of tree growth--is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other--often more complex--phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.


Asunto(s)
Fagus/crecimiento & desarrollo , Modelos Teóricos , Picea/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Temperatura , Árboles/crecimiento & desarrollo , Adaptación Fisiológica , Hojas de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...