Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Hemasphere ; 8(5): e77, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716146

RESUMEN

The mainstay of acute myeloid leukemia (AML) treatment still relies on traditional chemotherapy, with a survival rate of approximately 30% for patients under 65 years of age and as low as 5% for those beyond. This unfavorable prognosis primarily stems from frequent relapses, resistance to chemotherapy, and limited approved targeted therapies for specific AML subtypes. Around 70% of all AML cases show overexpression of the transcription factor HOXA9, which is associated with a poor prognosis, increased chemoresistance, and higher relapse rates. However, direct targeting of HOXA9 in a clinical setting has not been achieved yet. The dysregulation caused by the leukemic HOXA9 transcription factor primarily results from its binding activity to DNA, leading to differentiation blockade. Our previous investigations have identified two HOXA9/DNA binding competitors, namely DB1055 and DB818. We assessed their antileukemic effects in comparison to HOXA9 knockdown or cytarabine treatment. Using human AML cell models, DB1055 and DB818 induced in vitro cell growth reduction, death, differentiation, and common transcriptomic deregulation but did not impact human CD34+ bone marrow cells. Furthermore, DB1055 and DB818 exhibited potent antileukemic activities in a human THP-1 AML in vivo model, leading to the differentiation of monocytes into macrophages. In vitro assays also demonstrated the efficacy of DB1055 and DB818 against AML blasts from patients, with DB1055 successfully reducing leukemia burden in patient-derived xenografts in NSG immunodeficient mice. Our findings indicate that inhibiting HOXA9/DNA interaction using DNA ligands may offer a novel differentiation therapy for the future treatment of AML patients dependent on HOXA9.

2.
Am J Hematol ; 99(6): 1108-1118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563187

RESUMEN

We investigated using a custom NGS panel of 149 genes the mutational landscape of 64 consecutive adult patients with tyrosine kinase fusion-negative hypereosinophilia (HE)/hypereosinophilic syndrome (HES) harboring features suggestive of myeloid neoplasm. At least one mutation was reported in 50/64 (78%) patients (compared to 8/44 (18%) patients with idiopathic HE/HES/HEUS used as controls; p < .001). Thirty-five patients (54%) had at least one mutation involving the JAK-STAT pathway, including STAT5B (n = 18, among which the hotspot N642H, n = 13), JAK1 (indels in exon 13, n = 5; V658F/L, n = 2), and JAK2 (V617F, n = 6; indels in exon 13, n = 2). Other previously undescribed somatic mutations were also found in JAK2, JAK1, STAT5B, and STAT5A, including three patients who shared the same STAT5A V707fs mutation and features consistent with primary polycythemia. Nearly all JAK-STAT mutations were preceded by (or associated with) myelodysplasia-related gene mutations, especially in RNA-splicing genes or chromatin modifiers. In multivariate analysis, neurologic involvement (hazard ratio [HR] 4.95 [1.87-13.13]; p = .001), anemia (HR 5.50 [2.24-13.49]; p < .001), and the presence of a high-risk mutation (as per the molecular international prognosis scoring system: HR 6.87 [2.39-19.72]; p < .001) were independently associated with impaired overall survival. While corticosteroids were ineffective in all treated JAK-STAT-mutated patients, ruxolitinib showed positive hematological responses including in STAT5A-mutated patients. These findings emphasize the usefulness of NGS for the workup of tyrosine kinase fusion-negative HE/HES patients and support the use of JAK inhibitors in this setting. Updated classifications could consider patients with JAK-STAT mutations and eosinophilia as a new "gene mutated-entity" that could be differentiated from CEL, NOS, and idiopathic HES.


Asunto(s)
Síndrome Hipereosinofílico , Mutación , Factor de Transcripción STAT5 , Humanos , Síndrome Hipereosinofílico/genética , Síndrome Hipereosinofílico/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Factor de Transcripción STAT5/genética , Janus Quinasa 2/genética , Transducción de Señal , Janus Quinasa 1/genética , Anciano de 80 o más Años , Pirimidinas/uso terapéutico , Adulto Joven
3.
Blood Adv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513135

RESUMEN

Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well-established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in low-risk patients. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.

4.
Blood ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518104

RESUMEN

Given the poor outcome of refractory and relapsing T-ALL, identifying prognostic markers is still challenging. Using SNP-array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly-diagnosed T-ALL patients including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP-array results identified at least one somatic genomic imbalance in virtually all T-ALL patients (~96%). Del(9)(p21) (~70%) and UPD(9)p21)/CDKN2A/B (~28%) were the most frequent genomic imbalances. Unexpectedly del(13q14)/RB1/DLEU1 (~14%) was the second more frequent CNV followed by del(6)(q15)/CASP8AP2 (~11%), del(1)(p33)/SIL-TAL1 (~11%), del(12)(p13)ETV6/CDKN1B (~9%), del(18)(p11)/PTPN2 (~9%), del(1)(p36)/RPL22 (~9%), and del(17)(q11)/NF1/SUZ12 (~8%). SNP-array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult T-ALL patients demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n=6, ~2%), del(16)(p13)/CREBBP (n=15, ~5%) as well as the newly identified recurrent gain at 6q27 involving MLLT4 (n=10, ~3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4 maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL.

6.
Leukemia ; 38(2): 281-290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38228680

RESUMEN

Despite recent refinements in the diagnostic and prognostic assessment of CEBPA mutations in AML, several questions remain open, i.e. implications of different types of basic region leucin zipper (bZIP) mutations, the role of co-mutations and the allelic state. Using pooled primary data analysis on 1010 CEBPA-mutant adult AML patients, a comparison was performed taking into account the type of mutation (bZIP: either typical in-frame insertion/deletion (InDel) mutations (bZIPInDel), frameshift InDel or nonsense mutations inducing translational stop (bZIPSTOP) or single base-pair missense alterations (bZIPms), and transcription activation domain (TAD) mutations) and the allelic state (single (smCEBPA) vs. double mutant (dmCEBPA)). Only bZIPInDel patients had significantly higher rates of complete remission and longer relapse free and overall survival (OS) compared with all other CEBPA-mutant subgroups. Moreover, co-mutations in bZIPInDel patients (e.g. GATA2, FLT3, WT1 as well as ELN2022 adverse risk aberrations) had no independent impact on OS, whereas in non-bZIPInDel patients, grouping according to ELN2022 recommendations added significant prognostic information. In conclusion, these results demonstrate bZIPInDel mutations to be the major independent determinant of outcome in CEBPA-mutant AML, thereby refining current classifications according to WHO (including all dmCEBPA and smCEBPA bZIP) as well as ELN2022 and ICC recommendations (including CEBPA bZIPms).


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Humanos , Proteínas Potenciadoras de Unión a CCAAT/genética , Mutación del Sistema de Lectura , Mutación , Pronóstico
9.
JACC Basic Transl Sci ; 8(11): 1424-1435, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38093739

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is considered as being a novel age-related risk factor for cardiovascular diseases. By capture-sequencing of a 67-gene panel, we established a large spectrum of CHIP in 258 patients with aortic valve stenosis undergoing transcatheter aortic valve replacement (TAVR) and assessed their association with long-term survival after TAVR. One or several CHIP variants in 35 genes were identified in 68% of the cohort, DNMT3A and TET2 being the 2 most frequently mutated genes. Patients carrying a TET2-CHIP-driver variant with low variant allele frequency (2%-10%) had a significant decrease in overall survival 5 years after TAVR.

10.
Hemasphere ; 7(9): e943, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37637995

RESUMEN

The objective of this study was to assess the clinical impact and financial costs of next-generation sequencing (NGS) in 5 categories of pediatric and adult hematological cancers. NGS prescriptions were prospectively collected from 26 laboratories, with varied technical and reporting practice (all or only significant targets). Impact was defined by the identification of (1) an actionable mutation, (2) a mutation with prognostic and/or theranostic value, and/or (3) a mutation allowing nosological refinement, reported by local investigators. A microcosting study was undertaken in 4 laboratories, identifying the types and volumes of resources required for each procedural step. Individual index prescriptions for 3961 patients were available for impact analysis on the management of myeloid disorders (two thirds) and, mainly mature B, lymphoid disorders (one third). NGS results were considered to impact the management for 73.4% of prescriptions: useful for evaluation of prognostic risk in 34.9% and necessary for treatment adaptation (actionable) in 19.6%, but having no immediate individual therapeutic impact in 18.9%. The average overall cost per sample was 191 € for the restricted mature lymphoid amplicon panel. Capture panel costs varied from 369 € to 513 €. Unit costs varied from 0.5 € to 5.7 € per kb sequenced, from 3.6 € to 11.3 € per target gene/hot-spot sequenced and from 4.3 € to 73.8 € per target gene/hot-spot reported. Comparable costs for the Amplicon panels were 5-8 € per kb and 10.5-14.7 € per target gene/hot-spot sequenced and reported, demonstrating comparable costs with greater informativity/flexibility for capture strategies. Sustainable funding of precision medicine requires a transparent discussion of its impact on care pathways and its financial aspects.

11.
Blood Adv ; 7(20): 6092-6107, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37406166

RESUMEN

Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.


Asunto(s)
Neoplasias Hematológicas , Leucemia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Neoplasias Hematológicas/genética , Mutación de Línea Germinal , ARN Helicasas DEAD-box/genética , Carcinogénesis , Células Germinativas , Factor de Transcripción GATA2/genética
13.
Blood Adv ; 7(15): 4024-4034, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37205853

RESUMEN

Whether the LSC17 gene expression can improve risk stratification in the context of next generation sequencing-based risk stratification and measurable residual disease (MRD) in patients with intensively treated AML has not been explored. We analyzed LSC17 in 504 adult patients prospectively treated in the ALFA-0702 trial. RUNX1 or TP53 mutations were associated with higher LSC1 scores while CEBPA and NPM1 mutations were associated with lower scores. Patients with high LSC17 scores had a lower rate of complete response (CR) in a multivariable analysis (odds ratio, 0.41; P = .0007), accounting for European LeukemiaNet 2022 (ELN22), age, and white blood cell count (WBC). LSC17-high status was associated with shorter overall survival (OS) (3-year OS: 70.0% vs 52.7% in patients with LSC17-low status; P < .0001). In a multivariable analysis considering ELN22, age, and WBC, patients with LSC17-high status had shorter disease-free survival (DFS) (hazard ratio [HR], 1.36; P = .048) than those with LSC17-low status. In 123 patients with NPM1-mutated AML in CR, LSC17-high status predicted poorer DFS (HR, 2.34; P = .01), independent of age, WBC, ELN22 risk, and NPM1-MRD. LSC-low status and negative NPM1-MRD identified a subset comprising 48% of patients with mutated NPM1 with a 3-year OS from CR of 93.1% compared with 60.7% in those with LSC17-high status and/or positive NPM1-MRD (P = .0001). Overall, LSC17 assessment refines genetic risk stratification in adult patients with AML treated intensively. Combined with MRD, LSC17 identifies a subset of patients with NPM1-mutated AML with excellent clinical outcome.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Adulto , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Inducción de Remisión , Supervivencia sin Enfermedad , Factores de Riesgo , Neoplasia Residual/genética
14.
Leukemia ; 37(6): 1245-1253, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085611

RESUMEN

Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Niño , Humanos , Supervivencia sin Enfermedad , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/genética , Mutación , Pronóstico , Inducción de Remisión
16.
Cancer Med ; 12(5): 5656-5660, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36394159

RESUMEN

Personalized medicine is a challenge for patients with acute myeloid leukemia (AML). The identification of several genetic mutations in several AML trials led to the creation of a personalized prognostic scoring algorithm known as the Knowledge Bank (KB). In this study, we assessed the prognostic value of this algorithm on a cohort of 167 real life AML patients. We compared KB predicted outcomes to real-life outcomes. For patients younger than 60-year-old, OS was similar in favorable and intermediate ELN risk category. However, KB algorithm failed to predict OS for younger patients in the adverse ELN risk category and for patients older than 60 years old in the favorable ELN risk category. These discrepancies may be explained by the emergence of several new therapeutic options as well as the improvement of allogeneic stem cell transplantation (aHSCT) outcomes and supportive cares. Personalized medicine is a major challenge and predictions models are powerful tools to predict patient's outcome. However, the addition of new therapeutic options in the field of AML requires a prospective validation of these scoring systems to include recent therapeutic innovations.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Persona de Mediana Edad , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación
18.
BMC Bioinformatics ; 23(1): 448, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307762

RESUMEN

BACKGROUND: Internal tandem duplications in the FLT3 gene, termed FLT3-ITDs, are useful molecular markers in acute myeloid leukemia (AML) for patient risk stratification and follow-up. FLT3-ITDs are increasingly screened through high-throughput sequencing (HTS) raising the need for robust and efficient algorithms. We developed a new algorithm, which performs no alignment and uses little resources, to identify and quantify FLT3-ITDs in HTS data. RESULTS: Our algorithm (FiLT3r) focuses on the k-mers from reads covering FLT3 exons 14 and 15. We show that those k-mers bring enough information to accurately detect, determine the length and quantify FLT3-ITD duplications. We compare the performances of FiLT3r to state-of-the-art alternatives and to fragment analysis, the gold standard method, on a cohort of 185 AML patients sequenced with capture-based HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the other software evaluated. We also assess the software on public RNA-Seq data, which confirms the previous results and shows that FiLT3r requires little resources compared to other software. CONCLUSION: FiLT3r is a free software available at https://gitlab.univ-lille.fr/filt3r/filt3r . The repository also contains a Snakefile to reproduce our experiments. We show that FiLT3r detects FLT3-ITDs better than other software while using less memory and time.


Asunto(s)
Leucemia Mieloide Aguda , Secuencias Repetidas en Tándem , Humanos , Secuencias Repetidas en Tándem/genética , Leucemia Mieloide Aguda/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Exones , Secuencia de Bases , Tirosina Quinasa 3 Similar a fms/genética , Mutación
20.
Blood Cancer J ; 12(6): 95, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750691

RESUMEN

Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Antraciclinas/metabolismo , Antraciclinas/uso terapéutico , Citarabina/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...