Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
J Chem Theory Comput ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902855

RESUMEN

Auger-type processes are ubiquitous in nanoscale materials because quantum confinement enhances Coulomb interactions, and there exist large densities of states. Modeling Auger processes requires the modification of nonadiabatic (NA) molecular dynamics algorithms to include transitions caused by both NA and Coulomb couplings. The system is split into quantum and classical subsystems, e.g., electrons and vibrations, and as a result, energy conservation becomes nontrivial. In surface hopping, an electronic transition induced by NA coupling is accompanied by a classical velocity readjustment to ensure conservation of the total quantum-classical energy. A different treatment is needed for Auger transitions driven by Coulomb interactions. We develop a nonadiabatic molecular dynamics methodology that meticulously differentiates the energy redistribution accompanying hops induced by the NA coupling and the Coulomb interaction and correctly conserves the total energy at each transition. If the transition is driven by a Coulomb interaction, the hop energy is redistributed within the quantum electronic subsystem only. If the transition is NA, the energy is redistributed between the quantum and classical subsystems. Properly maintaining energy conservation for both types of transitions is crucial to generate a correct order of events, obtain accurate transition times, maintain a proper statistical distribution of state populations, and reach thermodynamic equilibrium. We test the method with biexciton annihilation and Auger-assisted hot electron relaxation in a CdSe quantum dot. The sequence of Auger and phonon-driven processes and the calculated time scales are in excellent agreement with the experimental results. The developed approach can be coupled with any surface-hopping method and provides a crucial practical advance to study charge-carrier dynamics in the nanoscale and condensed matter systems.

2.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814908

RESUMEN

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

3.
Nanoscale ; 16(23): 11223-11231, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775652

RESUMEN

Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates. We obtain a series of confined Cs3Bi2I9 and MA3Bi2I9 perovskites with diameters of 2.3, 3.7, 7.4, and 9.2 nm, and precise size control. The complex absorption spectra of the encapsulated perovskites cannot be properly fitted using classical Tauc or Elliott formalisms. By fitting the spectra with a modified Elliott formula, the bandgap values and exciton binding energies (70-400 meV) could be extracted. The calculated bandgaps scale with the pore sizes. Using a combined experimental and theoretical approach, we demonstrate for the first time quantum confinement in 0D Bi-iodide perovskite nanocrystals.

4.
J Am Chem Soc ; 146(23): 16314-16323, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38812460

RESUMEN

Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.

5.
Chem Mater ; 36(6): 2898-2906, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38558914

RESUMEN

Grain boundaries (GBs) play an important role in determining the optoelectronic properties of perovskites, requiring an atomistic understanding of the underlying mechanisms. Strain engineering has recently been employed in perovskite solar cells, providing a novel perspective on the role of perovskite GBs. Here, we theoretically investigate the impact of axial strain on the geometric and electronic properties of a common CsPbBr3 GB. We develop a machine learning force field and perform ab initio calculations to analyze the behavior of GB models with different axial strains on a nanosecond time scale. Our results demonstrate that compressing the GB efficiently suppresses structural fluctuations and eliminates trap states originating from large-scale distortions. The GB becomes more amorphous under compressive strain, which makes the relationship between the electronic structure and axial strain nonmonotonic. These results can help clarify the conflicts in perovskite GB experiments.

6.
Nanoscale ; 16(18): 8986-8995, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38623607

RESUMEN

Two-dimensional graphitic carbon nitride (GCN) is a popular metal-free polymer for sustainable energy applications due to its unique structure and semiconductor properties. Dopants and defects are used to tune GCN, and dual defect modified GCN exhibits superior properties and enhanced photocatalytic efficiency in comparison to pristine or single defect GCN. We employ a multistep approach combining time-dependent density functional theory and nonadiabatic molecular dynamics (NAMD) with machine learning (ML) to investigate coupled structural and electronic dynamics in GCN over a nanosecond timescale, comparable to and exceeding the lifetimes of photo-generated charge carriers and photocatalytic events. Although frequent hydrogen hopping transitions occur among four tautomeric structures, the electron-hole separation and recombination processes are only weakly sensitive to the tautomerism. The charge separated state survives for about 10 ps, sufficiently long to enable photocatalysis. The employed ML-NAMD methodology provides insights into rare events that can influence excited state dynamics in the condensed phase and nanoscale materials and extends NAMD simulations from pico- to nanoseconds. The ab initio quantum dynamics simulation provides a detailed atomistic mechanism of photoinduced evolution of charge carriers in GCN and rationalizes how GCN remains photo-catalytically active despite its multiple isomeric and tautomeric forms.

7.
J Phys Chem Lett ; 15(14): 3884-3892, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38560917

RESUMEN

An analytical model of highly nonequilibrium hopping transport of charge carriers in disordered organic semiconductors has been developed. In particular, the initial time interval is considered when transport is controlled by hops down in energy. The model is applied to the calculation of the separation probability of geminate pairs in a semiconductor with a Gaussian energy distribution of localized states. This probability determines the photogeneration efficiency. The temperature dependence of the separation probability is obtained and shown to be much weaker than predicted by the classical Onsager model, in agreement with experiment and Monte Carlo simulations. The field dependence is taken into account using a modified effective temperature method.

8.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38506296

RESUMEN

Using ab initio nonadiabatic molecular dynamics, we study the effect of large A-site cations on nonradiative electron-hole recombination in two-dimensional Ruddlesden-Popper perovskites HA2APb2I7, HA = n-hexylammonium, A = methylammonium (MA), or guanidinium (GA). The steric hindrance created by large GA cations distorts and stiffens the inorganic Pb-I lattice, reduces thermal structural fluctuations, and maintains the delocalization of electrons and holes at ambient and elevated temperatures. The delocalized charges interact more strongly in the GA system than in the MA system, and the charge recombination is accelerated. In contrast, replacement of only some MA cations with GA enhances disorder and increases charge lifetime, as seen in three-dimensional perovskites. This study highlights the key influence of structural fluctuations and disorder on the properties of charge carriers in metal halide perovskites, providing guidance for tuning materials' optoelectronic performance.

9.
J Phys Chem Lett ; 15(8): 2202-2208, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38373150

RESUMEN

In recent years, single atom catalysts have been at the forefront of energy conversion research, particularly in the field of catalysis. Carbon nitrides offer great potential as hosts for stabilizing metal atoms due to their unique electronic structure. We use ab initio nonadiabatic molecular dynamics to study photoexcitation dynamics in single atom cobalt based graphitic carbon nitride. The results elucidate the positive effect of the doped cobalt atom on the electronic structure of GCN. Cobalt doping produces filled midgap states that serve as oxidation centers, advantageous for various redox reactions. The presence of midgap states enables the harvesting of longer wavelength photons, thereby extending the absorption range of solar light. Although doping accelerates charge relaxation overall, charge recombination is significantly slower than charge separation, creating beneficial conditions for catalysis applications. The simulations reveal the detailed microscopic mechanism underlying the improved performance of the doped system due to atomic defects and demonstrate an effective charge separation strategy to construct highly efficient and stable photocatalytic two-dimensional materials.

10.
J Phys Chem Lett ; 15(9): 2601-2605, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38416805

RESUMEN

Spatial-energy correlations strongly influence charge and exciton transport in weakly ordered media such as organic semiconductors and nanoparticle assemblies. Focusing on cases with shorter-range interparticle interactions, we develop a unified analytic approach that allows us to calculate the temperature and field dependence of charge carrier mobility in organic quadrupole glasses and the temperature dependence of the diffusion coefficient of excitons in quantum dot solids. We obtain analytic expressions for the energy distribution of hopping centers, the characteristic escape time of charge/exciton from the energy well stemming from energy correlations around deep states, and the size of the well. The derived formulas are tested with Monte Carlo simulation results, showing good agreement and providing simple analytic expressions for analysis of charge and exciton mobility in a broad range of partially ordered media.

11.
ACS Nano ; 18(3): 1931-1947, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38197410

RESUMEN

The ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe2 junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe2, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe2. We observe ultrafast interfacial hole (h) transfer from 1L- to 7L-WSe2 on an ∼0.2 ps time scale. The resultant excess h density in 7L-WSe2 decays by carrier recombination across the junction interface on an ∼100 ps time scale. Reminiscent of the behavior at a depletion region, the TR-PEEM image reveals the h density accumulation on the 7L-WSe2 interface, with a decay length ∼0.60 ± 0.17 µm. These charge transfer and recombination dynamics are in agreement with ab initio quantum dynamics. The computed orbital densities reveal that charge transfer occurs from the basal plane, which extends over both 1L and ML regions, to the upper plane localized on the ML region. This mode of charge transfer is distinctive to chemically homogeneous junctions of layered materials and constitutes an additional carrier deactivation pathway that should be considered in studies of 1L-TMDs found alongside their ML, a common occurrence in exfoliated samples.

12.
Nano Lett ; 24(1): 61-66, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113396

RESUMEN

The decay of excited states via radiative and nonradiative paths is well understood in molecules and bulk semiconductors but less so in nanocrystals. Here, we perform time-resolved photoluminescence (t-PL) experiments on CsPbBr3 metal-halide perovskite nanocrystals, with a time resolution of 3 ps, sufficient to observe the decay of both excitons and biexcitons as a function of temperature. The striking result is that the radiative rate constant of the single exciton increases at low temperatures with an exponential functional form, suggesting quantum coherent effects with dephasing at high temperatures. The opposing directions of the radiative and nonradiative decay rate constants enable enhanced brightening of PL from excitons to biexcitons due to quantum effects, promoting a faster approach to the quantum theoretical limits of light emission. Ab initio quantum dynamics simulations reproduce the experimental observations of radiation controlled by quantum spatial coherence enhanced at low temperatures.

13.
J Am Chem Soc ; 146(1): 1042-1052, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147589

RESUMEN

Electrocatalytic coupling of CO and N2 to synthesize urea under ambient conditions is considered a promising strategy to replace traditional industrial technology. It is crucial to find efficient electrocatalysts that can adsorb and activate N2 and promote the C-N coupling reaction. Herein, a new two-dimensional porous carbon nitride material with multiactive sites is designed, in which boron and transition metal are embedded. Through a series of screening, B2Cr2, B2Mn2, and B2Os2 are predicted to be potential electrocatalysts for urea synthesis. Mechanistic studies are performed on bidentate metal-metal and metal-boron sites, and both NCON and CO mechanisms are explored. The electronic structure analysis shows that there is a strong N2 chemical adsorption within the bidentate site and that the N≡N bond is significantly activated. A new mechanism where free CO is inserted for C-N coupling within the two-dimensional porous structure is proposed.

14.
J Chem Theory Comput ; 19(24): 9403-9415, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048307

RESUMEN

We report on the implementation of a versatile projection-operator diabatization approach to calculate electronic coupling integrals in layered periodic systems. The approach is applied to model charge transport across the saturated organic spacers in two-dimensional (2D) lead halide perovskites. The calculations yield out-of-plane charge transfer rates that decay exponentially with the increasing length of the alkyl chain, range from a few nanoseconds to milliseconds, and are supportive of a hopping mechanism. Most importantly, we show that the charge carriers strongly couple to distortions of the Pb-I framework and that accounting for the associated nonlocal dynamic disorder increases the thermally averaged interlayer rates by a few orders of magnitude compared to the frozen-ion 0 K-optimized structure. Our formalism provides the first comprehensive insight into the role of the organic spacer cation on vertical transport in 2D lead halide perovskites and can be readily extended to functional π-conjugated spacers, where we expect the improved energy alignment with the inorganic layout to speed up the charge transfer between the semiconducting layers.

15.
J Phys Chem Lett ; 14(50): 11384-11392, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078872

RESUMEN

Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.

16.
J Am Chem Soc ; 145(51): 28166-28175, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38086059

RESUMEN

The Cu single-atom catalyst (SAC) supported on TiO2 exhibits outstanding efficacy in photocatalytic hydrogen evolution. The precise operational mechanism remains a subject of ongoing debate. The focus resides with the interplay linking heightened catalytic activity, dynamic valence state alterations of Cu atoms, and their hybridization with H2O orbitals, manifested in catalyst color changes. Taking anatase TiO2 (101) as a prototypical surface, we perform ab initio quantum dynamics simulation to reveal that the high activity of the Cu-SAC is due to the quasi-planar coordination structure of the Cu atom after H2O adsorption, allowing it to trap photoexcited hot electrons and inject them into the hybridized orbital between Cu and H2O. The observed alterations in the valence state and the coloration can be attributed to the H atom released during H2O dissociation and adsorbed onto the lattice O atom neighboring the Cu-SAC. Notably, this adsorption of H atoms puts the Cu-SAC into an inert state, as opposed to an activating effect reported previously. Our work clarifies the relationship between the high photocatalytic activity and the local dynamic atomic coordination structure, providing atomistic insights into the structural changes occurring during photocatalytic reactions on SACs.

17.
J Phys Chem Lett ; 14(49): 11134-11141, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38052040

RESUMEN

A new family of ternary nitride materials, Zn2(V, Nb, Ta)N3 monolayers, is predicted. A fabrication mechanism of the Zn2(V, Nb, Ta)N3 monolayers is proposed based on the chemical vapor deposition approach used for their bulk counterparts. The calculations show that these monolayers are thermodynamically and environmentally stable and that the Zn2VN3 monolayer is the most stable and the easiest to synthesize. The Zn2VN3 monolayer also has the highest strength and elasticity. The Zn2(V, Nb, Ta)N3 monolayers are semiconductors with nearly equal direct and indirect band gaps. Considering optoelectronic properties, the predicted monolayers are transparent to the visible light and provide shielding in the ultraviolet region. Thus, the predicted Zn2(V, Nb, Ta)N3 monolayers are promising for applications in LED devices and as blocking layers in tandem solar cells.

18.
J Phys Chem Lett ; 14(47): 10685-10692, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37988630

RESUMEN

Perovskite solar cells have witnessed a surge in interest as a promising technology for low-cost, high-efficiency photovoltaics with certified power conversion efficiencies beyond 25%. However, their commercial development is hindered by poor stability and nonradiative losses that restrict their approach to the theoretical efficiency limit. Using ab initio nonadiabatic molecular dynamics, we demonstrate that nonradiative charge recombination is suppressed when the iodide in formamidinium lead iodide (FAPbI3) is partially replaced with pseudohalide anions (SCN-, BF4-, and PF6-). The replacement breaks the symmetry of the system and creates local structural distortion and dynamic disorder, decreasing electron-hole overlap and nonadiabatic electron-vibrational coupling. The charge carrier lifetime is found to increase with increased structural distortion and is the longest for PF6-. This work is fundamentally relevant to the design of high-performance perovskite materials for optoelectronic applications.

19.
J Phys Chem Lett ; 14(48): 10825-10831, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38019766

RESUMEN

Here, we demonstrate a concentrated light-induced band edge tuning effect in photocatalytic hydrogen production. This band movement along with Femi level pinning leads to two distinct catalytic behaviors upon irradiation flux increase. Specifically, the concentration of the light promotes more long-lived carriers bound to the surface electronic states, progressively boosting energy conversion efficiency to a maximum value. Afterward, efficiency diminishes gradually due to poor carrier transfer. This work offers critical insights into efficient and economical photocatalytic hydrogen production.

20.
J Phys Chem Lett ; 14(43): 9604-9611, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37862673

RESUMEN

Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...