Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1372944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911326

RESUMEN

The neuropeptides kisspeptin, neurokinin B, and dynorphin A are imperative for the pulsatile secretion of gonadotropin-releasing hormone and luteinizing hormone to ultimately regulate reproductive cyclicity. A population of neurons co-expressing these neuropeptides, KNDy neurons, within the arcuate nucleus of the hypothalamus (ARC) are positioned to integrate energy status from afferent neuronal and glial cells. We hypothesized that KNDy-expressing neurons in the ARC of mature ewes are influenced by energy balance. To test this hypothesis, ovary-intact, mature ewes were fed to lose, maintain, or gain body weight and hypothalamic tissue harvested during the luteal phase of the estrous cycle. Fluorescent, multiplex immunohistochemistry with direct antibody conjugation was employed to identify and quantify neurons expressing a single neuropeptide, as well as for the first time report co-expression of kisspeptin, neurokinin B, and dynorphin A protein in the ARC. Previous reports using this population of ewes demonstrated that concentrations of insulin and leptin differed between ewes fed to achieve different body weights and that ewes fed to gain body weight had increased concentrations of progesterone. Moreover, within this population of ewes tanycyte density and cellular penetration into the ARC was increased in ewes fed to gain body weight. Within the current report we have revealed that the number of neurons in the ARC expressing kisspeptin, neurokinin B, and dynorphin A protein was increased in ewes fed to gain body weight. Moreover, the number of KNDy neurons in the ARC expressing all three neuropeptides within a single neuron was decreased in ewes fed to lose body weight and increased in ewes fed to gain body weight when compared to ewes fed to maintain body weight. The cumulative findings of this experimental model suggest that expression of kisspeptin, neurokinin B, and dynorphin A protein in the ARC during the luteal phase of the estrous cycle are influenced by energy balance-induced alterations in circulating concentrations of progesterone that drive changes in morphology and density of tanycytes to ultimately regulate central perception of global energy status. Moreover, these results demonstrate that changes in KNDy neurons within the ARC occur as an adaptation to energy balance, potentially regulated divergently by metabolic milieu via proopiomelanocortin afferents.

2.
Animals (Basel) ; 13(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893910

RESUMEN

Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.

3.
Animals (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611615

RESUMEN

Prolific use of supplementation strategies, including the utilization of urea, are practiced in beef cattle production systems. Unfortunately, the influence of urea supplementation on metabolics, adipose tissue mobilization, and mammary secretions is limited in beef cows. Therefore, the objectives of this experiment were to assess the influence of urea supplementation on metabolic profiles, morphometrics, and mammary secretions. Pregnant, multiparous beef cows were fed individually and assigned to treatment (n = 4/treatment) as Control or Urea Supplementation. Blood samples and body weight were collected every 28 d throughout gestation. Backfat thickness was measured via ultrasonography on days 28 and 280 of gestation. Total mammary secretions were sampled for composition. Concentrations of beta-hydroxybutyrate, non-esterified fatty acids, glucose, and plasma urea nitrogen did not differ by treatment. Body weight and backfat thickness changed in response to the progression of gestation, but did not differ between treatments. Finally, concentration of urea nitrogen increased in mammary secretions of cows fed urea, but total content of urea nitrogen in mammary secretions did not differ between treatments. In conclusion, we have demonstrated that the pregnant beef cow undergoes metabolic adaptation during gestation. However, urea supplementation failed to improve any of the morphometric parameters of the dams assessed.

4.
Biol Reprod ; 99(2): 433-445, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30101293

RESUMEN

The pubertal transition of gonadotropin secretion in pigs is metabolically gated. Kisspeptin (KISS1) and neurokinin B (NKB) are coexpressed in neurons within the arcuate nucleus of the hypothalamus (ARC) and are thought to play an important role in the integration of nutrition and metabolic state with the reproductive neuroendocrine axis. The hypothesis that circulating concentrations of luteinizing hormone (LH) and expression of KISS1 and tachykinin 3(TAC3, encodes NKB) in the ARC of female pigs are reduced with negative energy balance was tested using ovariectomized, prepubertal gilts fed to either gain or lose body weight. Restricted feeding of ovariectomized gilts caused a rapid and sustained metabolic response characterized by reduced concentrations of plasma urea nitrogen, insulin, leptin, and insulin-like growth factor-1 and elevated concentrations of free fatty acids. The secretory pattern of LH shifted from one of low amplitude to one of high amplitude, which caused overall circulating concentrations of LH to be greater in restricted gilts. Nutrient-restricted gilts had greater expression of follicle-stimulating hormone and gonadotropin-releasing hormone receptor, but not LH in the anterior pituitary gland. Expression of KISS1 in the ARC was not affected by dietary treatment, but expression of TAC3 was greater in restricted gilts. These data are consistent with the idea that hypothalamic expression of KISS1 is correlated with the number of LH pulse in pig, and further indicate that amplitude of LH pulses may be regulated by NKB in the gilt.


Asunto(s)
Metabolismo Energético/fisiología , Privación de Alimentos/fisiología , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Neuroquinina B/metabolismo , Adenohipófisis/metabolismo , Animales , Ácidos Grasos no Esterificados/sangre , Femenino , Hormona Folículo Estimulante/metabolismo , Insulina/sangre , Kisspeptinas/metabolismo , Leptina/sangre , Neuronas/metabolismo , Receptores LHRH/metabolismo , Porcinos
5.
Domest Anim Endocrinol ; 65: 71-79, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007131

RESUMEN

Maternal nutrient restriction during gestation can exert long-term negative effects on offspring health and performance. Arginine supplementation may rescue some of the negative effects elicited by maternal nutrient restriction. We tested the hypothesis that maternal arginine supplementation during gestation would rescue deleterious effects of nutrient restriction on in vitro O2 consumption in the liver and jejunum and hypothalamic protein expression of proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AgRP), and neuronal nitric oxide synthase (nNOS), and the colocalization of nNOS and active phosphor-signal transducer and activator of transcription 3 (pSTAT3) in female offspring. Multiparous ewes were assigned to dietary treatment at 54 d of gestation: 100% of requirements (Con), 60% of control (Res), or Res plus rumen-protected arginine (Res-Arg; 180 mg/kg). At parturition, offspring were immediately removed from their dam and placed on a common diet. At 54 ± 4 d of age, female lambs (n = 6 per treatment) were weighed, the liver and jejunum were weighed, and samples were collected for in vitro measurement of O2 consumption. The hypothalamus was collected to determine protein expression of POMC, NPY, AgRP, and nNOS, and the colocalization of nNOS and pSTAT3 (n = 3, 4, and 4 for Con, Res, and Res-Arg, respectively). Hepatic consumption of O2 in vitro (mol/min/liver) was decreased (P = 0.04) in the Res and Res-Arg group compared with Con. Intensity of staining for NPY-containing fibers tended to decrease (P = 0.10) in Res and Res-Arg compared with Con. Number of POMC neuronal cells in the arcuate nucleus (ARC) of the hypothalamus decreased (P ≤ 0.03) in the Res group compared with Res-Arg. These observations demonstrate that maternal nutrient restriction decreases energy utilization in the liver and number of POMC cells in the ARC of offspring. Supplementation of arginine to the gestating ewe failed to influence hepatic use of energy in lambs from Res ewes. Numbers of POMC-containing cells were increased in the ARC in lambs from ewes restricted to 60% of nutritional requirements and supplemented with rumen-protected arginine, potentially influencing feeding behavior and hepatic energy metabolism.


Asunto(s)
Arginina/administración & dosificación , Privación de Alimentos/fisiología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Consumo de Oxígeno/efectos de los fármacos , Ovinos/fisiología , Proteína Relacionada con Agouti , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Edad Gestacional , Hipotálamo/química , Inmunohistoquímica , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Neuropéptido Y/análisis , Óxido Nítrico Sintasa de Tipo I/análisis , Necesidades Nutricionales , Embarazo , Proopiomelanocortina/análisis , Rumen/metabolismo
6.
Biol Reprod ; 96(3): 617-634, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339619

RESUMEN

Mechanisms governing the timing of puberty in pigs are poorly understood. A genome-wide association study for age at first estrus in pigs identified candidate genes including neuropeptide FF receptor 2 (NPFFR2), which is a putative receptor for RFamide-related peptides (RFRP). RFRP has been shown to negatively regulate secretion of reproductive hormones from hypothalamic and pituitary tissue of pigs in culture. Here, the porcine NPFFR2 gene was further screened and four potentially functional variants were identified to be associated with age at first estrus in pigs (1,288 gilts). The RFRP neurons in the porcine hypothalamus were localized in the paraventricular and dorsomedial nuclei with RFRP fibers in the lateral hypothalamic area. There were marked changes in expression of NPFF receptors in the anterior pituitary gland and hypothalamus of gilts beginning with the peripubertal period. The hypothesis that NPFF receptor function is related to secretion of luteinizing hormone (LH) in gilts was tested with various NPFF receptor ligands. The NPFF receptor antagonist RF9 stimulated a pulse-like release of LH in prepubertal gilts. The putative NPFF receptor agonist RFRP3 modestly suppressed LH pulses in ovariectomized (OVX) prepubertal gilts. A porcine-specific RFRP2 failed to have an effect on LH secretion in OVX prepubertal gilts despite its high degree of homology to avian gonadotropin-inhibitory hormone. Results indicate that an RFRP system is present in the pig and that NPFFR2 is important for pubertal onset in gilts. It is not clear if this regulation involves major control of LH secretion or another unknown mechanism.


Asunto(s)
Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Neuropéptidos/metabolismo , Adenohipófisis/metabolismo , Receptores de Neuropéptido/metabolismo , Maduración Sexual , Adamantano/análogos & derivados , Animales , Dipéptidos , Femenino , Porcinos
7.
Biol Reprod ; 92(2): 46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505201

RESUMEN

Increased body weight (BW) gain during the juvenile period leads to early maturation of the reproductive neuroendocrine system. We investigated whether a nutritional regimen that advances the onset of puberty leads to alterations in the hypothalamic neuropeptide Y (NPY) circuitry that are permissive for enhanced gonadotropin-releasing hormone (GnRH) secretion. It was hypothesized that NPY mRNA and NPY projections to GnRH and kisspeptin neurons are reduced in heifers that gain BW at an accelerated rate, compared with a lower one, during the juvenile period. Heifers were weaned at approximately 4 mo of age and fed diets to promote relatively low (0.5 kg/day; low gain [LG]) or high (1.0 kg/day; high gain [HG]) rates of BW gain until 8.5 mo of age. Heifers that gained BW at a higher rate exhibited greater circulating concentrations of leptin and reduced overall NPY expression in the arcuate nucleus. The proportion of GnRH neurons in close apposition to NPY fibers and the magnitude of NPY projections to GnRH neurons located in the mediobasal hypothalamus were reduced in HG heifers. However, no differences in NPY projections to kisspeptin neurons in the arcuate nucleus were detected between HG and LG heifers. Results indicate that a reduction in NPY innervation of GnRH neurons, particularly at the level of the mediobasal hypothalamus, occurs in response to elevated BW gain during the juvenile period. This functional plasticity may facilitate early onset of puberty in heifers.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Neuropéptido Y/metabolismo , Aumento de Peso/fisiología , Animales , Bovinos , Femenino , Kisspeptinas/metabolismo , Leptina/sangre , Maduración Sexual/fisiología
8.
J Endocrinol ; 223(3): 289-98, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326602

RESUMEN

Feeding a high-concentrate diet to heifers during the juvenile period, resulting in increased body weight (BW) gain and adiposity, leads to early-onset puberty. In this study, we tested the hypothesis that the increase in GnRH/LH release during nutritional acceleration of puberty is accompanied by reciprocal changes in circulating leptin and central release of neuropeptide Y (NPY). The heifers were weaned at 3.5 months of age and fed to gain either 0.5 (Low-gain; LG) or 1.0 kg/day (High-gain; HG) for 30 weeks. A subgroup of heifers was fitted surgically with third ventricle guide cannulas and was subjected to intensive cerebrospinal fluid (CSF) and blood sampling at 8 and 9 months of age. Mean BW was greater in HG than in LG heifers at week 6 of the experiment and remained greater thereafter. Starting at 9 months of age, the percentage of pubertal HG heifers was greater than that of LG heifers, although a replicate effect was observed. During the 6-h period in which CSF and blood were collected simultaneously, all LH pulses coincided with or shortly followed a GnRH pulse. At 8 months of age, the frequency of LH pulses was greater in the HG than in the LG group. Beginning at 6 months of age, concentrations of leptin were greater in HG than in LG heifers. At 9 months of age, concentrations of NPY in the CSF were lesser in HG heifers. These observations indicate that increased BW gain during juvenile development accelerates puberty in heifers, coincident with reciprocal changes in circulating concentrations of leptin and hypothalamic NPY release.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Dieta , Leptina/sangre , Neuropéptido Y/líquido cefalorraquídeo , Maduración Sexual/fisiología , Alimentación Animal/análisis , Animales , Peso Corporal/fisiología , Bovinos , Femenino , Hormona Liberadora de Gonadotropina/líquido cefalorraquídeo , Hipotálamo/metabolismo , Hormona Luteinizante/sangre , Neuropéptido Y/metabolismo , Radioinmunoensayo/métodos , Factores de Tiempo , Destete
9.
Biol Reprod ; 90(2): 28, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24389874

RESUMEN

RFamide-related peptide 3 (RFRP3), the mammalian homologue of avian gonadotropin-inhibitory hormone, has been shown to negatively regulate the secretion of LH and may contribute to reproductive seasonality in some species. Herein, we examined the presence and potential role of the RFRP3-signaling system in regulating LH secretion in the mare during the breeding and nonbreeding seasons. Hypothalamic NPVF mRNA (the precursor mRNA for RFRP3) was detected at the level of the dorsomedial nucleus and paraventricular nucleus, but expression did not change with season. A greater number of RFRP3-expressing cells was observed throughout the rostral-caudal extension of the dorsomedial nucleus. Furthermore, adenohypophyseal expression of the RFRP3 receptor (NPFFR1) during the winter anovulatory season did not differ from that during either the follicular or luteal phases of the estrous cycle. When tested in primary adenohypophyseal cell culture or in vivo during both the breeding and nonbreeding seasons, neither equine nor ovine peptide sequences for RFRP3 suppressed basal or GnRH-mediated release of LH. However, infusion of RF9, an RFRP3 receptor-signaling antagonist, into seasonally anovulatory mares induced a robust increase in secretion of LH both before and following continuous treatment with GnRH. The results indicate that the cellular machinery associated with RFRP3 function is present in the equine hypothalamus and adenohypophysis. However, evidence for functionality of the RFRP3-signaling network was only obvious when an antagonist RF9 was employed. Because GnRH-induced release of LH was not affected by RF9, its actions may occur upstream from the gonadotrope to stimulate or disinhibit secretion of GnRH.


Asunto(s)
Caballos , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Adenohipófisis/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Reproducción/fisiología , Animales , Cruzamiento , Células Cultivadas , Femenino , Caballos/genética , Caballos/metabolismo , Hipotálamo/efectos de los fármacos , Neuropéptidos/genética , Neuropéptidos/farmacología , Adenohipófisis/efectos de los fármacos , Estaciones del Año , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA