Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Nat Genet ; 56(4): 615-626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594305

RESUMEN

Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining noncoding variant function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Alelos , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Fenotipo , Cromatina/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad/genética
2.
medRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352307

RESUMEN

Despite great progress on methods for case-control polygenic prediction (e.g. schizophrenia vs. control), there remains an unmet need for a method that genetically distinguishes clinically related disorders (e.g. schizophrenia (SCZ) vs. bipolar disorder (BIP) vs. depression (MDD) vs. control); such a method could have important clinical value, especially at disorder onset when differential diagnosis can be challenging. Here, we introduce a method, Differential Diagnosis-Polygenic Risk Score (DDx-PRS), that jointly estimates posterior probabilities of each possible diagnostic category (e.g. SCZ=50%, BIP=25%, MDD=15%, control=10%) by modeling variance/covariance structure across disorders, leveraging case-control polygenic risk scores (PRS) for each disorder (computed using existing methods) and prior clinical probabilities for each diagnostic category. DDx-PRS uses only summary-level training data and does not use tuning data, facilitating implementation in clinical settings. In simulations, DDx-PRS was well-calibrated (whereas a simpler approach that analyzes each disorder marginally was poorly calibrated), and effective in distinguishing each diagnostic category vs. the rest. We then applied DDx-PRS to Psychiatric Genomics Consortium SCZ/BIP/MDD/control data, including summary-level training data from 3 case-control GWAS ( N =41,917-173,140 cases; total N =1,048,683) and held-out test data from different cohorts with equal numbers of each diagnostic category (total N =11,460). DDx-PRS was well-calibrated and well-powered relative to these training sample sizes, attaining AUCs of 0.66 for SCZ vs. rest, 0.64 for BIP vs. rest, 0.59 for MDD vs. rest, and 0.68 for control vs. rest. DDx-PRS produced comparable results to methods that leverage tuning data, confirming that DDx-PRS is an effective method. True diagnosis probabilities in top deciles of predicted diagnosis probabilities were considerably larger than prior baseline probabilities, particularly in projections to larger training sample sizes, implying considerable potential for clinical utility under certain circumstances. In conclusion, DDx-PRS is an effective method for distinguishing clinically related disorders.

3.
Nat Commun ; 15(1): 563, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233398

RESUMEN

Prioritizing disease-critical cell types by integrating genome-wide association studies (GWAS) with functional data is a fundamental goal. Single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) have characterized cell types at high resolution, and studies integrating GWAS with scRNA-seq have shown promise, but studies integrating GWAS with scATAC-seq have been limited. Here, we identify disease-critical fetal and adult brain cell types by integrating GWAS summary statistics from 28 brain-related diseases/traits (average N = 298 K) with 3.2 million scATAC-seq and scRNA-seq profiles from 83 cell types. We identified disease-critical fetal (respectively adult) brain cell types for 22 (respectively 23) of 28 traits using scATAC-seq, and for 8 (respectively 17) of 28 traits using scRNA-seq. Significant scATAC-seq enrichments included fetal photoreceptor cells for major depressive disorder, fetal ganglion cells for BMI, fetal astrocytes for ADHD, and adult VGLUT2 excitatory neurons for schizophrenia. Our findings improve our understanding of brain-related diseases/traits and inform future analyses.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Trastorno Depresivo Mayor , Humanos , RNA-Seq , Estudio de Asociación del Genoma Completo , Cromatina/genética , Encéfalo , Análisis de la Célula Individual
4.
medRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260678

RESUMEN

Polygenic Scores (PGSs) summarize an individual's genetic propensity for a given trait in a single value, based on SNP effect sizes derived from Genome-Wide Association Study (GWAS) results. Methods have been developed that apply Bayesian approaches to improve the prediction accuracy of PGSs through optimization of estimated effect sizes. While these methods are generally well-calibrated for continuous traits (implying the predicted values are on average equal to the true trait values), they are not well-calibrated for binary disorder traits in ascertained samples. This is a problem because well-calibrated PGSs are needed to reliably compute the absolute disorder probability for an individual to facilitate future clinical implementation. Here we introduce the Bayesian polygenic score Probability Conversion (BPC) approach, which computes an individual's predicted disorder probability using GWAS summary statistics, an existing Bayesian PGS method (e.g. PRScs, SBayesR), the individual's genotype data, and a prior disorder probability. The BPC approach transforms the PGS to its underlying liability scale, computes the variances of the PGS in cases and controls, and applies Bayes' Theorem to compute the absolute disorder probability; it is practical in its application as it does not require a tuning dataset with both genotype and phenotype data. We applied the BPC approach to extensive simulated data and empirical data of nine disorders. The BPC approach yielded well-calibrated results that were consistently better than the results of another recently published approach.

5.
medRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106023

RESUMEN

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

6.
Nat Genet ; 55(12): 2200-2210, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036783

RESUMEN

In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.


Asunto(s)
Enfermedades Autoinmunes , Cromatina , Humanos , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cromosomas , Enfermedades Autoinmunes/genética , Genoma Humano
7.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37961337

RESUMEN

Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N=316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the well-established role of CTLA4 in CD8+ T cells for All autoimmune disease. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.

8.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014075

RESUMEN

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

9.
medRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37790574

RESUMEN

The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized, but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given disease/trait and E variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRS) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP-heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP-heritability across E bins. Simulations show that these approaches achieve high sensitivity and specificity in distinguishing these three GxE scenarios. We applied our framework to 33 UK Biobank diseases/traits (average N=325K) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly < 1 (FDR<5%) (average rg=0.95); for example, white blood cell count had rg=0.95 (s.e. 0.01) between smokers and non-smokers. Second, we identified 28 trait-E pairs with significant PRSxE and significant SNP-heritability differences across E bins; for example, type 2 diabetes had a significant PRSxE for alcohol consumption (P=1e-13) with 4.2x larger SNP-heritability in the largest versus smallest quintiles of alcohol consumption (P<1e-16). Third, we identified 15 trait-E pairs with significant PRSxE with no SNP-heritability differences across E bins; for example, triglyceride levels had a significant PRSxE effect for composite diet score (P=4e-5) with no SNP-heritability differences. Analyses using biological sex as the E variable produced additional significant findings in each of the three scenarios. Overall, we infer a substantial contribution of GxE and GxSex effects to disease and complex trait variance.

10.
Nat Genet ; 55(11): 1854-1865, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814053

RESUMEN

The analysis of longitudinal data from electronic health records (EHRs) has the potential to improve clinical diagnoses and enable personalized medicine, motivating efforts to identify disease subtypes from patient comorbidity information. Here we introduce an age-dependent topic modeling (ATM) method that provides a low-rank representation of longitudinal records of hundreds of distinct diseases in large EHR datasets. We applied ATM to 282,957 UK Biobank samples, identifying 52 diseases with heterogeneous comorbidity profiles; analyses of 211,908 All of Us samples produced concordant results. We defined subtypes of the 52 heterogeneous diseases based on their comorbidity profiles and compared genetic risk across disease subtypes using polygenic risk scores (PRSs), identifying 18 disease subtypes whose PRS differed significantly from other subtypes of the same disease. We further identified specific genetic variants with subtype-dependent effects on disease risk. In conclusion, ATM identifies disease subtypes with differential genome-wide and locus-specific genetic risk profiles.


Asunto(s)
Predisposición Genética a la Enfermedad , Salud Poblacional , Humanos , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Comorbilidad , Herencia Multifactorial/genética , Reino Unido/epidemiología
11.
Nat Genet ; 55(9): 1503-1511, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580597

RESUMEN

Integrative analyses of genome-wide association studies and gene expression data have implicated many disease-critical tissues. However, co-regulation of genetic effects on gene expression across tissues impedes distinguishing biologically causal tissues from tagging tissues. In the present study, we introduce tissue co-regulation score regression (TCSC), which disentangles causal tissues from tagging tissues by regressing gene-disease association statistics (from transcriptome-wide association studies) on tissue co-regulation scores, reflecting correlations of predicted gene expression across genes and tissues. We applied TCSC to 78 diseases/traits (average n = 302,000) and gene expression prediction models for 48 GTEx tissues. TCSC identified 21 causal tissue-trait pairs at a 5% false discovery rate (FDR), including well-established findings, biologically plausible new findings (for example, aorta artery and glaucoma) and increased specificity of known tissue-trait associations (for example, subcutaneous adipose, but not visceral adipose, and high-density lipoprotein). TCSC also identified 17 causal tissue-trait covariance pairs at 5% FDR. In conclusion, TCSC is a precise method for distinguishing causal tissues from tagging tissues.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple , Transcriptoma/genética
12.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747789

RESUMEN

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comßVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.

13.
Res Sq ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168385

RESUMEN

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

14.
Nat Genet ; 54(10): 1572-1580, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050550

RESUMEN

Single-cell RNA sequencing (scRNA-seq) provides unique insights into the pathology and cellular origin of disease. We introduce single-cell disease relevance score (scDRS), an approach that links scRNA-seq with polygenic disease risk at single-cell resolution, independent of annotated cell types. scDRS identifies cells exhibiting excess expression across disease-associated genes implicated by genome-wide association studies (GWASs). We applied scDRS to 74 diseases/traits and 1.3 million single-cell gene-expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-associated cells not captured by existing cell-type labels, including T cell subpopulations associated with inflammatory bowel disease, partially characterized by their effector-like states; neuron subpopulations associated with schizophrenia, partially characterized by their spatial locations; and hepatocyte subpopulations associated with triglyceride levels, partially characterized by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across cells (reflecting coexpression with GWAS disease-associated genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Herencia Multifactorial/genética , RNA-Seq , Análisis de la Célula Individual/métodos , Triglicéridos
15.
Nat Genet ; 54(10): 1479-1492, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175791

RESUMEN

Genome-wide association studies provide a powerful means of identifying loci and genes contributing to disease, but in many cases, the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. In the present study, we introduce sc-linker, a framework for integrating single-cell RNA-sequencing, epigenomic SNP-to-gene maps and genome-wide association study summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. The inferred disease enrichments recapitulated known biology and highlighted notable cell-disease relationships, including γ-aminobutyric acid-ergic neurons in major depressive disorder, a disease-dependent M-cell program in ulcerative colitis and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease-dependent immune cell-type programs were associated, whereas only disease-dependent epithelial cell programs were prominent, suggesting a role in disease response rather than initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.


Asunto(s)
Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Genética Humana , Humanos , Polimorfismo de Nucleótido Simple/genética , ARN , Ácido gamma-Aminobutírico
16.
Cell Genom ; 2(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35935918

RESUMEN

Polygenic risk scores (PRSs) derived from genotype data and family history (FH) of disease provide valuable information for predicting disease risk, but PRSs perform poorly when applied to diverse populations. Here, we explore methods for combining both types of information (PRS-FH) in UK Biobank data. PRSs were trained using all British individuals (n = 409,000), and target samples consisted of unrelated non-British Europeans (n = 42,000), South Asians (n = 7,000), or Africans (n = 7,000). We evaluated PRS, FH, and PRS-FH using liability-scale R 2, primarily focusing on 3 well-powered diseases (type 2 diabetes, hypertension, and depression). PRS attained average prediction R 2s of 5.8%, 4.0%, and 0.53% in non-British Europeans, South Asians, and Africans, confirming poor cross-population transferability. In contrast, PRS-FH attained average prediction R 2s of 13%, 12%, and 10%, respectively, representing a large improvement in Europeans and an extremely large improvement in Africans. In conclusion, including family history improves the accuracy of polygenic risk scores, particularly in diverse populations.

17.
Cell Genom ; 2(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35873673

RESUMEN

We assess contributions to autoimmune disease of genes whose regulation is driven by enhancer regions (enhancer-related) and genes that regulate other genes in trans (candidate master-regulator). We link these genes to SNPs using several SNP-to-gene (S2G) strategies and apply heritability analyses to draw three conclusions about 11 autoimmune/blood-related diseases/traits. First, several characterizations of enhancer-related genes using functional genomics data are informative for autoimmune disease heritability after conditioning on a broad set of regulatory annotations. Second, candidate master-regulator genes defined using trans-eQTL in blood are also conditionally informative for autoimmune disease heritability. Third, integrating enhancer-related and master-regulator gene sets with protein-protein interaction (PPI) network information magnified their disease signal. The resulting PPI-enhancer gene score produced >2-fold stronger heritability signal and >2-fold stronger enrichment for drug targets, compared with the recently proposed enhancer domain score. In each case, functionally informed S2G strategies produced 4.1- to 13-fold stronger disease signals than conventional window-based strategies.

18.
Nat Genet ; 54(6): 827-836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668300

RESUMEN

Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
19.
Nature ; 606(7912): 120-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545678

RESUMEN

Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.


Asunto(s)
Predisposición Genética a la Enfermedad , Células T de Memoria , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Perú , Sitios de Carácter Cuantitativo/genética
20.
Nat Genet ; 54(4): 450-458, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393596

RESUMEN

Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage disequilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and PolyPred+ attained similar improvements.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...