Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ecol Evol ; 10(10): 4314-4330, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489599

RESUMEN

Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season. The adjacent Arabian Sea is characterized by a sharper environmental gradient, ranging from extensive coral cover and warm temperatures in the southwest, to sparse coral cover, cooler temperatures, and seasonal upwelling in the northeast. Reef fish, however, are not confined to these seas, with some Red Sea fishes extending varying distances into the northern Arabian Sea, while their pelagic larvae are presumably capable of much greater dispersal. These species must therefore cope with a diversity of conditions that invoke the possibility of steep clines in natural selection. Here, we test for genetic structure in two widespread reef fish species (a butterflyfish and surgeonfish) and eight range-restricted butterflyfishes across the Red Sea and Arabian Sea using genome-wide single nucleotide polymorphisms. We performed multiple matrix regression with randomization analyses on genetic distances for all species, as well as reconstructed scenarios for population subdivision in the species with signatures of isolation. We found that (a) widespread species displayed more genetic subdivision than regional endemics and (b) this genetic structure was not correlated with contemporary environmental parameters but instead may reflect historical events. We propose that the endemic species may be adapted to a diversity of local conditions, but the widespread species are instead subject to ecological filtering where different combinations of genotypes persist under divergent ecological regimes.

3.
PLoS One ; 14(9): e0222285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31498848

RESUMEN

Whale sharks (Rhincodon typus) are typically dispersed throughout their circumtropical range, but the species is also known to aggregate in specific coastal areas. Accurate site descriptions associated with these aggregations are essential for the conservation of R. typus, an Endangered species. Although aggregations have become valuable hubs for research, most site descriptions rely heavily on sightings data. In the present study, visual census, passive acoustic monitoring, and long range satellite telemetry were combined to track the movements of R. typus from Shib Habil, a reef-associated aggregation site in the Red Sea. An array of 63 receiver stations was used to record the presence of 84 acoustically tagged sharks (35 females, 37 males, 12 undetermined) from April 2010 to May 2016. Over the same period, identification photos were taken for 76 of these tagged individuals and 38 were fitted with satellite transmitters. In total of 37,461 acoustic detections, 210 visual encounters, and 33 satellite tracks were analyzed to describe the sharks' movement ecology. The results demonstrate that the aggregation is seasonal, mostly concentrated on the exposed side of Shib Habil, and seems to attract sharks of both sexes in roughly equal numbers. The combined methodologies also tracked 15 interannual homing-migrations, demonstrating that many sharks leave the area before returning in later years. When compared to acoustic studies from other aggregations, these results demonstrate that R. typus exhibits diverse, site-specific ecologies across its range. Sightings-independent data from acoustic telemetry and other sources are an effective means of validating more common visual surveys.


Asunto(s)
Distribución Animal/fisiología , Tiburones/fisiología , Migración Animal/fisiología , Animales , Ecología , Ecosistema , Femenino , Océano Índico , Masculino , Estaciones del Año
4.
J Anim Ecol ; 88(12): 1888-1900, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429473

RESUMEN

Variation in life-history characteristics is evident within and across animal populations. Such variation is mediated by environmental gradients and reflects metabolic constraints or trade-offs that enhance reproductive outputs. While generalizations of life-history relationships across species provide a framework for predicting vulnerability to overexploitation, deciphering patterns of intraspecific variation may also enable recognition of peculiar features of populations that facilitate ecological resilience. This study combines age-based biological data from geographically disparate populations of bluespine unicornfish (Naso unicornis)-the most commercially valuable reef-associated species in the insular Indo-Pacific-to explore the magnitude and drivers of variation in life span and examine the mechanisms enabling peculiar mortality schedules. Longevity and mortality schedules were investigated across eleven locations encompassing a range of latitudes and exploitation levels. The presence of different growth types was examined using back-calculated growth histories from otoliths. Growth-type-dependent mortality (mortality rates associated with particular growth trajectories) was corroborated using population models that incorporated size-dependent competition. We found a threefold geographic variation in life span that was strongly linked to temperature, but not to anthropogenic pressure or ocean productivity. All populations consistently displayed a two-phase mortality schedule, with higher than expected natural mortality rates in earlier stages of post-settlement life. Reconstructed growth histories and population models demonstrated that variable growth types within populations can yield this peculiar biphasic mortality schedule, where fast growers enjoy early reproductive outputs at the expense of greater mortality, and benefits for slow growers derive from extended reproductive outputs over a greater number of annual cycles. This promotes population resilience because individuals can take advantage of cycles of environmental change operating at both short- and long-term scales. Our results highlight a prevailing, fundamental misperception when comparing the life histories of long-lived tropical ectotherms: the seemingly incongruent combination of extended life spans with high mortality rates was enabled by coexistence of variable growth types in a population. Thus, a demographic profile incorporating contrasting growth and mortality strategies obscures the demographic effects of harvest across space or time in N. unicornis and possibly other ectotherms with the combination of longevity and asymptotic growth.


Asunto(s)
Peces , Perciformes , Animales , Demografía , Ecología , Membrana Otolítica
5.
Commun Biol ; 1: 223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564744

RESUMEN

Overexploitation of large apex marine predators is widespread in the world's oceans, yet the timing and extent of declines are poorly understood. Here we reconstruct a unique fisheries-independent dataset from a shark control programme spanning 1760 km of the Australian coastline over the past 55 years. We report substantial declines (74-92%) of catch per unit effort of hammerhead (Sphyrnidae), whaler (Carcharhinidae), tiger shark (Galeocerdo cuvier) and white sharks (Carcharodon carcharias). Following onset of the program in the 1960s, catch rates in new installations in subsequent decades occurred at a substantially lower rate, indicating regional depletion of shark populations over the past half a century. Concurrent declines in body size and the probability of encountering mature individuals suggests that apex shark populations are more vulnerable to exploitation than previously thought. Ongoing declines and lack of recovery of vulnerable and protected shark species are a cause for concern.

6.
Nat Ecol Evol ; 1(6): 148, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28812625

RESUMEN

Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13-19 km, with 90% of settlement occurring within 31-43 km. Mean dispersal distances were considerably greater (43-64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.

7.
R Soc Open Sci ; 3(3): 150694, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27069662

RESUMEN

Conservation commonly requires trade-offs between social and ecological goals. For tropical small-scale fisheries, spatial scales of socially appropriate management are generally small-the median no-take locally managed marine area (LMMA) area throughout the Pacific is less than 1 km(2). This is of particular concern for large coral reef fishes, such as many species of grouper, which migrate to aggregations to spawn. Current data suggest that the catchment areas (i.e. total area from which individuals are drawn) of such aggregations are at spatial scales that preclude effective community-based management with no-take LMMAs. We used acoustic telemetry and tag-returns to examine reproductive migrations and catchment areas of the grouper Epinephelus fuscoguttatus at a spawning aggregation in Papua New Guinea. Protection of the resultant catchment area of approximately 16 km(2) using a no-take LMMA is socially untenable here and throughout much of the Pacific region. However, we found that spawning migrations were skewed towards shorter distances. Consequently, expanding the current 0.2 km(2) no-take LMMA to 1-2 km(2) would protect approximately 30-50% of the spawning population throughout the non-spawning season. Contrasting with current knowledge, our results demonstrate that species with moderate reproductive migrations can be managed at scales congruous with spatially restricted management tools.

8.
Ecol Evol ; 2(12): 3195-213, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23301184

RESUMEN

We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks. In addition to spatial sampling of adults, newly-settled individuals were sampled on Guam over four recruitment events to assess the temporal stability of the observed spatial patterns, and evidence of self-recruitment. We found significant genetic structure in S. spinus across the western Pacific, with Bayesian analyses revealing three genetically distinct clusters: the southern Mariana Islands, east Micronesia, and the west Pacific; with the southern Mariana Islands being more strongly differentiated from the rest of the region. Analyses of temporal samples from Guam indicated the southern Mariana cluster was stable over time, with no genetic differentiation between adults versus recruits, or between samples collected across four separate recruitment events spanning 11 months. Subsequent assignment tests indicated seven recruits had self-recruited from within the Southern Mariana Islands population. Our results confirm the relative isolation of the southern Mariana Islands population and highlight how local processes can act to isolate populations that, by virtue of their broad-scale distribution, have been subject to traditionally high gene flows. Our results add to a growing consensus that self-recruitment is a highly significant influence on the population dynamics of tropical reef fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...