Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 112: 110891, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409048

RESUMEN

BSA-capped gold nanoclusters are promising theragnostic systems that can be excited to render both fluorescence emission and reactive oxygen species. Although their synthesis and photoluminescence properties are already well described, more accurate information about their use as photosensitizers is required in order to advance towards health applications. In this work, we have obtained BSA-capped gold nanoclusters and characterized their photophysics by different techniques. Singlet oxygen production was detected upon irradiation, which was enough to produce toxicity on two cell lines. Remarkably, an internal energy transfer, probably due to the presence of smaller nanoclusters and the contribution of oxidized residues of BSA in the system, caused fluorescence emission near 640 nm after excitation in the UV range. Additionally, the system was capable of penetrating human skin beyond the stratum corneum, which enhances the potential of these nanoclusters as bifunctional photodynamic therapy effectors and biomarkers with application in a diversity of skin diseases. In the absence of radiation, BSA-capped gold nanoclusters did not cause toxicity in vitro, while their toxic effect on an in vivo model as zebrafish was determined.


Asunto(s)
Oro/química , Nanopartículas/química , Albúmina Sérica Bovina/química , Piel/metabolismo , Adulto , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Larva/efectos de los fármacos , Larva/fisiología , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Oxígeno Singlete/metabolismo , Piel/efectos de los fármacos , Rayos Ultravioleta , Pez Cebra/crecimiento & desarrollo
2.
AAPS PharmSciTech ; 21(3): 110, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32215751

RESUMEN

Alzheimer's disease has become a public health priority, so an investigation of new therapies is required. Tacrine (TAC) was licensed for treatments; however, its oral administration caused hepatotoxicity, so it is essential to reduce the side effects. PAMAM dendrimer generation 4.0 and 4.5 (DG4.0 and DG4.5) can be used as drug delivery systems and as nanodrugs per se. Our work aims to propose a combined therapy based on TAC and PAMAM dendrimer co-administration. TAC and dendrimer interactions were studied by in vitro drug release, drug stability, and FTIR. The toxicity profile of co-administration was evaluated in human red blood cells, in Neuro-2a cell culture, and in zebrafish larvae. Also, the anti-acetylcholinesterase activity was studied in cell culture. It was possible to obtain DG4.0-TAC and DG4.5-TAC suspensions, without reducing the drug solubility and stability. FTIR and in vitro release studies confirmed that interaction between TAC and DG4.5 was of the electrostatic type. No toxicity effects on human red blood cells were observed, whereas the co-administration with DG4.5 reduced cytotoxicity of TAC on the Neuro-2a cell line. Moreover, in vivo co-administration of both DG4.0-TAC and DG4.5-TAC reduced the morphological and hepatotoxic effects of TAC in zebrafish larvae. The reduction of TAC toxicity was not accompanied by a reduction in its activity since the anti-acetylcholinesterase activity remains when it is co-administrated with dendrimers. In conclusion, the co-administration of TAC with both DG4.0 and DG4.5 is a novel therapy since it was less-toxic, was more biocompatible, and has the same effectiveness than the free drug. Graphical abstract.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/administración & dosificación , Dendrímeros/administración & dosificación , Sistemas de Liberación de Medicamentos , Tacrina/administración & dosificación , Animales , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Estabilidad de Medicamentos , Humanos , Solubilidad , Tacrina/efectos adversos , Tacrina/química , Pez Cebra
3.
Nanomedicine (Lond) ; 14(4): 375-385, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30688554

RESUMEN

AIM: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could be solved with subsequent derivatizations. MATERIALS & METHODS: Folic and PEG-conjugated nanoparticles were obtained from amino-functionalized silicon nanoparticle (NH2SiNP). Cytotoxicity was determined on a tumor cell line at low and high concentrations. Four end points of in vivo toxicity were evaluated on zebrafish (Danio rerio). RESULTS: Folic acid functionalization reduced the cytotoxicity in comparison to amino and PEG-functionalized nanoparticles. In zebrafish, folic functionalization lowered toxicity in general while PEG increased it. CONCLUSION: Functionalization of NH2SiNP with folic acid reduced the toxic effects in vitro and in vivo. This could be useful for therapeutic applications. PEG functionalization did not lower the toxicity.


Asunto(s)
Ácido Fólico/química , Nanopartículas/química , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/farmacología , Nanopartículas/toxicidad , Silicio/química , Silicio/toxicidad , Pez Cebra
4.
Int J Pharm ; 544(1): 191-202, 2018 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-29678547

RESUMEN

Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine.


Asunto(s)
Carbamazepina/administración & dosificación , Dendrímeros/administración & dosificación , Sistemas de Liberación de Medicamentos , Fármacos Neuroprotectores/administración & dosificación , Animales , Carbamazepina/química , Carbamazepina/toxicidad , Línea Celular , Células Cultivadas , Dendrímeros/química , Dendrímeros/toxicidad , Liberación de Fármacos , Estabilidad de Medicamentos , Eritrocitos/efectos de los fármacos , Liofilización , Frecuencia Cardíaca/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Larva/fisiología , Locomoción/efectos de los fármacos , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/toxicidad , Pez Cebra/anomalías , Pez Cebra/fisiología
5.
PLoS One ; 12(10): e0186194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020107

RESUMEN

Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4°C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel non-viral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.


Asunto(s)
Acetileno/química , ADN/metabolismo , Lípidos/química , Plásmidos/metabolismo , Polímeros/síntesis química , Animales , Bioensayo , Células COS , Cationes , Supervivencia Celular , Chlorocebus aethiops , Desoxirribonucleasas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Hemólisis , Luz , Ratones , Peso Molecular , Polimerizacion , Polímeros/química , Dispersión de Radiación , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA