Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Am J Hypertens ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780971

RESUMEN

BACKGROUND: High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its' receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS: We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-L-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS: HS alone did not alter mean BP in untreated mice (76±3 to 77±1 mmHg) but induced an augmented response in L-NAME treated (106±1 vs 97±2 mmHg) and in eNOSKO (107±2 vs 89±3 mmHg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT+HS (4.1 + 0.5%) than in WT+NS mice (2.7±0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT+NS (0.9±0.1%) and in eNOSKO+NS (1.4±0.2%) than in both WT+NS and WT+HS mice. CONCLUSION: These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.

2.
Hypertension ; 81(4): 682-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507510

RESUMEN

Renin was discovered more than a century ago. Since then, the functions of the renin-angiotensin system in the kidney have been the focus of intensive research revealing its importance in regulation of renal physiology and in the pathogenesis of heart, vascular, and kidney diseases. Inhibitors of renin-angiotensin system components are now foundational therapies for a range of kidney and cardiovascular diseases from hypertension to heart failure to diabetic nephropathy. Despite years of voluminous research, emerging studies continue to reveal new complexities of the regulation of the renin-angiotensin system within the kidney and identification of nonclassical components of the system like the prorenin receptor (PRR) and ACE2 (angiotensin-converting enzyme 2), with powerful renal effects that ultimately impact the broader cardiovascular system. With the emergence of a range of novel therapies for cardiovascular and kidney diseases, the importance of a detailed understanding of the renin-angiotensin system in the kidney will allow for the development of informed complementary approaches for combinations of treatments that will optimally promote health and longevity over the century ahead.


Asunto(s)
Nefropatías Diabéticas , Hipertensión , Humanos , Sistema Renina-Angiotensina , Promoción de la Salud , Riñón/metabolismo , Renina/metabolismo , Nefropatías Diabéticas/metabolismo
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203807

RESUMEN

Increased body weight (BW) induces inappropriate renin-angiotensin system (RAS) activation. The activation of the intrarenal RAS is associated with increased urinary angiotensinogen (uAGT), blood pressure (BP), and kidney damage. Here, we examined uAGT excretion levels in young non-diabetic human subjects with overweight (OW) and non-diabetic mice with high-fat diet (HFD)-induced OW. Human subjects (women and men; 20-28 years old) included two groups: (a) overweight (OW, n = 17, BMI ≥ 25); and (b) controls (normal weight (NW; n = 26, BMI ≤ 25). In these subjects, we measured BP, albuminuria, and protein levels of uAGT by ELISA adjusted by urinary creatinine (expressed by uAGT/uCrea). Mice (female and male C57BL/6J mice, 8 ± 2 weeks of age) also included two groups: HFD or normal fat diet (NFD) fed for 8 weeks. We measured BW, fasting blood glucose (FBG), BP by telemetry, albuminuria, and uAGT by ELISA. In humans: (i) no significant changes were observed in BP, albuminuria, and FBG when comparing NW and OW subjects; (ii) multivariate logistic regression analysis of independent predictors related to uAGT/uCrea levels demonstrated a strong association between uAGT and overweight; (iii) urinary reactive oxygen species (ROS) were augmented in men and women with OW; (iv) the uAGT/uCrea ratio was higher in men with OW. However, the uAGT/uCrea values were lower in women even with OW. In mice: (i) males fed an HFD for 8 weeks became OW while females did not; (ii) no changes were observed either in FBG, BP, or albuminuria; (iii) kidney ROS were augmented in OW male mice after 28 weeks but not in females; (iv) OW male mice showed augmented excretion of uAGT but this was undetectable in females fed either NFD or HFD. In humans and mice who are OW, the urinary excretion of AGT differs between males and females and overcomes overt albuminuria.


Asunto(s)
Angiotensinógeno , Sobrepeso , Sistema Renina-Angiotensina , Caracteres Sexuales , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Adulto Joven , Albuminuria , Angiotensinógeno/orina , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno
4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175599

RESUMEN

The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Ratas , Masculino , Animales , Cloruro de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ratas Wistar , Hipertensión/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo , Presión Sanguínea , Riñón/metabolismo , Iones/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 324(6): H762-H775, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930656

RESUMEN

Plasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM. Male and female C57BL/6J mice were fed either a normal fat diet (NFD) or an HFD for 28 wk to assess changes in blood pressure, cardiometabolic phenotype, plasma prorenin/renin, sPRR, and ANG II. After completing dietary protocols, tissues were collected from males to assess vascular reactivity and aortic reactive oxygen species (ROS). A cohort of male mice was used to determine the direct contribution of increased systemic sPRR by infusion. To investigate the role of ovarian hormones, ovariectomy (OVX) was performed at 32 wk in females fed either an NFD or HFD. Significant sex differences were found after 28 wk of HFD, where only males developed T2DM and increased plasma prorenin/renin, sPRR, and ANG II. T2DM in males was accompanied by nondipping hypertension, carotid artery stiffening, and aortic ROS. sPRR infusion in males induced vascular thickening instead of material stiffening caused by HFD-induced T2DM. While intact females were less prone to T2DM, OVX increased plasma prorenin/renin, sPRR, and systolic blood pressure. These data suggest that sPRR is a novel indicator of systemic RAAS activation and reflects the onset of vascular complications during T2DM regulated by sex.NEW & NOTEWORTHY High-fat diet (HFD) for 28 wk leads to type 2 diabetes mellitus (T2DM) phenotype, concomitant with increased plasma soluble prorenin receptor (sPRR), nondipping blood pressure, and vascular stiffness in male mice. HFD-fed female mice exhibiting a preserved cardiometabolic phenotype until ovariectomy revealed increased plasma sPRR and blood pressure. Plasma sPRR may indicate the status of systemic renin-angiotensin-aldosterone system (RAAS) activation and the onset of vascular complications during T2DM in a sex-dependent manner.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , ATPasas de Translocación de Protón Vacuolares , Femenino , Masculino , Ratones , Animales , Renina , Receptor de Prorenina , Dieta Alta en Grasa/efectos adversos , Especies Reactivas de Oxígeno , Ratones Endogámicos C57BL , Sistema Renina-Angiotensina/genética , Receptores de Superficie Celular/genética , Presión Sanguínea
6.
J Med Primatol ; 52(2): 131-134, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36377612

RESUMEN

Increases of soluble urokinase plasminogen activator receptor (suPAR) were measured in both urine and plasma of a Chlorocebus aethiops (African green monkey; AGM) mucosal infected with SARS-CoV-2. The data indicate that elevated suPAR may be associated with renal dysfunction and pathology in the context of COVID-19.


Asunto(s)
COVID-19 , Enfermedades Renales , Animales , Chlorocebus aethiops , COVID-19/complicaciones , Receptores del Activador de Plasminógeno Tipo Uroquinasa , SARS-CoV-2 , Biomarcadores
7.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998033

RESUMEN

The (Pro)renin receptor ([P]RR), also known as ATP6AP2, is a single-transmembrane protein that is implicated in a multitude of biological processes. However, the exact role of ATP6AP2 during blood vessel development remains largely undefined. Here, we use an inducible endothelial cell-specific (EC-specific) Atp6ap2-KO mouse model to investigate the role of ATP6AP2 during both physiological and pathological angiogenesis in vivo. We observed that postnatal deletion of Atp6ap2 in ECs results in cell migration defects, loss of tip cell polarity, and subsequent impairment of retinal angiogenesis. In vitro, Atp6ap2-deficient ECs similarly displayed reduced cell migration, impaired sprouting, and defective cell polarity. Transcriptional profiling of ECs isolated from Atp6ap2 mutant mice further indicated regulatory roles in angiogenesis, cell migration, and extracellular matrix composition. Mechanistically, we provided evidence that expression of various extracellular matrix components is controlled by ATP6AP2 via the ERK pathway. Furthermore, Atp6ap2-deficient retinas exhibited reduced revascularization in an oxygen-induced retinopathy model. Collectively, our results demonstrate a critical role of ATP6AP2 as a regulator of developmental and pathological angiogenesis.


Asunto(s)
Polaridad Celular , ATPasas de Translocación de Protón , Receptores de Superficie Celular , Renina , Animales , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Oxígeno/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Renina/metabolismo
8.
Curr Hypertens Rev ; 18(2): 91-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35170417

RESUMEN

The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.


Asunto(s)
Hipertensión , Renina , Humanos , Angiotensina II , Presión Sanguínea , Receptor de Prorenina , Receptores de Superficie Celular/metabolismo , Sistema Renina-Angiotensina
11.
Physiol Rep ; 9(16): e14990, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34427402

RESUMEN

In hypertension induced by angiotensin II (AngII) administration with high salt (HS) intake, intrarenal angiotensinogen (AGT) and tumor necrosis factor-alpha (TNF-α) levels increase. However, TNF-α has been shown to suppress AGT formation in cultured renal proximal tubular cells. We examined the hypothesis that elevated AngII levels during HS intake reduces TNF-α receptor type 1 (TNFR1) activity in the kidneys, thus facilitating increased intrarenal AGT formation. The responses to HS diet (4% NaCl) with chronic infusion of AngII (25 ng/min) via implanted minipump for 4 weeks were assessed in wild-type (WT) and knockout (KO) mice lacking TNFR1 or TNFR2 receptors. Blood pressure was measured by tail-cuff plethysmography, and 24-h urine samples were collected using metabolic cages prior to start (0 day) and at the end of 2nd and 4th week periods. The urinary excretion rate of AGT (uAGT; marker for intrarenal AGT) was measured using ELISA. HS +AngII treatment for 4 weeks increased mean arterial pressure (MAP) in all strains of mice. However, the increase in MAP in TNFR1KO (77 ± 2 to 115 ± 3 mmHg; n = 7) was significantly greater (p < 0.01) than in WT (76 ± 1 to 102 ± 2 mmHg; n = 7) or in TNFR2KO (78 ± 2 to 99 ± 5 mmHg; n = 6). The increase in uAGT at 4th week was also greater (p < 0.05) in TNFR1KO mice (6 ± 2 to 167 ± 75 ng/24 h) than that in WT (6 ± 3 to 46 ± 16 ng/24 h) or in TNFR2KO mice (8 ± 7 to 65 ± 44 ng/24 h). The results indicate that TNFR1 exerts a protective role by mitigating intrarenal AGT formation induced by elevated AngII and HS intake.


Asunto(s)
Angiotensinógeno/metabolismo , Hipertensión Renal/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Angiotensina II/toxicidad , Animales , Presión Sanguínea , Hipertensión Renal/etiología , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Cloruro de Sodio Dietético/toxicidad
12.
Sci Rep ; 11(1): 13815, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226610

RESUMEN

Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-ß (TGF-ß) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-ß, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague-Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-ß, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-ß, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/genética , Glucosa/metabolismo , Túbulos Renales Colectores/metabolismo , Receptores de Superficie Celular/genética , Animales , Colágeno/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Túbulos Renales Colectores/patología , Ratas , Factor de Crecimiento Transformador beta/genética , Receptor de Prorenina
13.
Front Cardiovasc Med ; 8: 644797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179130

RESUMEN

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

14.
Biol Sex Differ ; 12(1): 33, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933156

RESUMEN

BACKGROUND: The soluble prorenin receptor (sPRR), a member of the renin-angiotensin system (RAS), is elevated in plasma of patients with preeclampsia, hypertension, chronic kidney disease (CKD), and type 2 diabetes. Our goal was to examine the relationship between sPRR and RAS activation to define whether sexual dimorphisms in sPRR might explain sex disparities in renal outcomes in patients with type 2 diabetes. METHODS: Two hundred sixty-nine participants were included in the study (mean age, 48 ± 16 years; 42% men, 58% women), including 173 controls and 96 subjects with type 2 diabetes. In plasma and urine, we measured sPRR, plasma renin activity (PRA), and prorenin. In the urine, we also measured angiotensinogen along with other biomarkers of renal dysfunction. RESULTS: Plasma sPRR and PRA were significantly higher in women with type 2 diabetes compared to men. In these women, plasma sPRR was positively correlated with PRA, age, and body mass index (BMI). In contrast, in men the sPRR in urine but not in plasma positively correlated with eGFR in urine, but negatively correlated with urine renin activity, plasma glucose, age, and BMI. CONCLUSIONS: In patients with type 2 diabetes, sPRR contributes to RAS stimulation in a sex-dependent fashion. In diabetic women, increased plasma sPRR parallels the activation of systemic RAS; while in diabetic men, decreased sPRR in urine matches intrarenal RAS stimulation. sPRR might be a potential indicator of intrarenal RAS activation and renal dysfunction in men and women with type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Femenino , Humanos , Enfermedades Renales , Masculino , Persona de Mediana Edad , Receptores de Superficie Celular , Renina , Caracteres Sexuales , Receptor de Prorenina
15.
Nat Rev Nephrol ; 17(7): 481-492, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33824491

RESUMEN

The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.


Asunto(s)
Hipertensión/fisiopatología , Túbulos Renales Colectores/fisiopatología , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Humanos , Receptores de Superficie Celular/fisiología , Renina/metabolismo , Receptor de Prorenina
16.
Front Physiol ; 11: 559341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281610

RESUMEN

In the kidney, the stimulation of renin production by the collecting duct (CD-renin) contributes to the development of hypertension. The CD is a major nephron segment for the synthesis of nitric oxide (NO), and low NO bioavailability in the renal medulla is associated with hypertension. However, it is unknown whether NO regulates renin production in the CD. To test the hypothesis that low intrarenal NO levels stimulate the production of CD-renin, we first examined renin expression in the distal nephron segments of CD-eNOS deficient mice. In these mice, specific CD-renin immunoreactivity was increased compared to wild-type littermates; however, juxtaglomerular (JG) renin was not altered. To further assess the intracellular mechanisms involved, we then treated M-1 cells with either 1 mM L-NAME (L-arginine analog), an inhibitor of NO synthase activity, or 1 mM NONOate, a NO donor. Both treatments increased intracellular renin protein levels in M-1 cells. However, only the inhibition of NOS with L-NAME stimulated renin synthesis and secretion as reflected by the increase in Ren1C transcript and renin protein levels in the extracellular media, respectively. In addition, NONOate induced a fast mobilization of cGMP and intracellular renin accumulation. These response was partially prevented by guanylyl cyclase inhibition with ODQ (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1]. Accumulation of intracellular renin was blocked by protein kinase G (PKG) and protein kinase C (PKC) inhibitors. Our data indicate that low NO bioavailability increases CD-renin synthesis and secretion, which may contribute to the activation of intrarenal renin angiotensin system.

17.
J Diabetes Complications ; 34(2): 107448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31761419

RESUMEN

AIM OF THE STUDY: During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS: Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS: All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ±â€¯0.50 vs. 0.92 ±â€¯0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS: In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.


Asunto(s)
Angiotensinógeno/orina , Diabetes Mellitus Tipo 2/fisiopatología , Sistema Renina-Angiotensina/fisiología , Albuminuria , Animales , Biomarcadores/orina , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 2/orina , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones
18.
Pharmacol Ther ; 200: 1-12, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30959059

RESUMEN

Acute kidney injury (AKI) is defined as a decrease in kidney function within hours, which encompasses both injury and impairment of renal function. AKI is not considered a pathological condition of single organ failure, but a syndrome in which the kidney plays an active role in the progression of multi-organ dysfunction. The incidence rate of AKI is increasing and becoming a common (8-16% of hospital admissions) and serious disease (four-fold increased hospital mortality) affecting public health costs worldwide. AKI also affects the young and previously healthy individuals affected by infectious diseases in Latin America. Because of the multifactorial pathophysiological mechanisms, there is no effective pharmacological therapy that prevents the evolution or reverses the injury once established; therefore, renal replacement therapy is the only current alternative available for renal patients. The awareness of an accurate and prompt recognition of AKI underlying the various clinical phenotypes is an urgent need for more effective therapeutic interventions to diminish mortality and socio-economic impacts of AKI. The use of biomarkers as an indicator of the initial stage of the disease is critical and the cornerstone to fulfill the gaps in the field. This review discusses emerging strategies from basic science toward the anticipation of features, treatment of AKI, and new treatments using pharmacological and stem cell therapies. We will also highlight bioartificial kidney studies, addressing the limitations of the development of this innovative technology.


Asunto(s)
Lesión Renal Aguda/terapia , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Órganos Bioartificiales , Biomarcadores/metabolismo , Humanos , Riñones Artificiales
19.
Am J Hypertens ; 31(4): 504-511, 2018 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-29329358

RESUMEN

BACKGROUND: Indirect evidence suggests that angiotensin 1-7 (Ang1-7) may counterbalance prohypertensive actions of angiotensin II (AngII), via activation of vascular and/or renal tubular receptors to cause vasodilation and natriuresis/diuresis. We examined if Ang1-7 would attenuate the development of hypertension, renal vasoconstriction, and decreased natriuresis in AngII-infused rats and evaluated the mechanisms involved. METHODS: AngII, alone or with Ang1-7, was infused to conscious Sprague-Dawley rats for 13 days and systolic blood pressure (SBP) and renal excretion were repeatedly determined. In anesthetized rats, acute actions of Ang1-7 and effects of blockade of angiotensin AT1 or Mas receptors (candesartan or A-779) were studied. RESULTS: Chronic AngII infusion increased SBP from 143 ± 4 to 195 ± 6 mm Hg. With Ang1-7 co-infused, SBP increased from 133 ± 5 to 161 ± 5 mm Hg (increase reduced, P < 0.002); concurrent increases in urine flow (V) and sodium excretion (UNaV) were greater. In anesthetized normotensive or AngII-induced hypertensive rats, Ang1-7 infusion transiently increased mean arterial pressure (MABP), transiently decreased renal blood flow (RBF), and caused increases in UNaV and V. In normotensive rats, candesartan prevented the Ang1-7-induced increases in MABP and UNaV and the decrease in RBF. In anesthetized normotensive, rats intravenous A-779 increased MABP (114 ± 5 to 120 ± 5 mm Hg, P < 0.03) and urine flow. Surprisingly, these changes were not observed with A-779 applied during background Ang1-7 infusion. CONCLUSIONS: The results suggest that in AngII-dependent hypertension, Ang1-7 deficit contributes to sodium and fluid retention and thereby to BP elevation; a correction by Ang1-7 infusion seems mediated by AT1 and not Mas receptors.


Asunto(s)
Angiotensina II , Angiotensina I/farmacología , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/prevención & control , Fragmentos de Péptidos/farmacología , Animales , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Natriuresis/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Urodinámica/efectos de los fármacos
20.
Am J Physiol Renal Physiol ; 314(1): F70-F80, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978531

RESUMEN

Serelaxin is a novel recombinant human relaxin-2 that has been investigated for the treatment of acute heart failure. However, its effects on renal function, especially on the renal microcirculation, remain incompletely characterized. Our immunoexpression studies localized RXFP1 receptors on vascular smooth muscle cells and endothelial cells of afferent arterioles and on principal cells of collecting ducts. Clearance experiments were performed in male and female normotensive rats and Ang II-infused male rats. Serelaxin increased mean arterial pressure slightly and significantly increased renal blood flow, urine flow, and sodium excretion rate. Group analysis of all serelaxin infusion experiments showed significant increases in GFR. During infusion with subthreshold levels of Ang II, serelaxin did not alter mean arterial pressure, renal blood flow, GFR, urine flow, or sodium excretion rate. Heart rates were elevated during serelaxin infusion alone (37 ± 5%) and in Ang II-infused rats (14 ± 2%). In studies using the in vitro isolated juxtamedullary nephron preparation, superfusion with serelaxin alone (40 ng/ml) significantly dilated afferent arterioles (10.8 ± 1.2 vs. 13.5 ± 1.1 µm) and efferent arterioles (9.9 ± 0.9 vs. 11.9 ± 1.0 µm). During Ang II superfusion, serelaxin did not alter afferent or efferent arteriolar diameters. During NO synthase inhibition (l-NNA), afferent arterioles also did not show any vasodilation during serelaxin infusion. In conclusion, serelaxin increased overall renal blood flow, urine flow, GFR, and sodium excretion and dilated the afferent and efferent arterioles in control conditions, but these effects were attenuated or prevented in the presence of exogenous Ang II and NO synthase inhibitors.


Asunto(s)
Angiotensinas/metabolismo , Túbulos Renales Distales/efectos de los fármacos , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Microcirculación/efectos de los fármacos , Relaxina/farmacología , Animales , Femenino , Riñón/patología , Túbulos Renales Distales/irrigación sanguínea , Masculino , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Relaxina/metabolismo , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...