Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 41: 86-99, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670657

RESUMEN

Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50 % water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28 °C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10-4 probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Sistema Solar , Vuelo Espacial , Nave Espacial , Historia del Siglo XX
2.
Astrobiology ; 22(5): 552-567, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325553

RESUMEN

Finding evidence of life beyond Earth is the aim of future space missions to icy moons. Icy worlds with an ocean underlying the icy crust and in contact with a rocky subsurface have great astrobiological interest due to the potential for water-rock interactions that may provide a source of nutrients necessary to sustain life. Such water-rock interactions in icy moons can be indirectly investigated using analogous environments on the deep seafloor on Earth. Here, we investigate the presence of molecular and isotopic biomarkers in two submarine cold seep systems with intense rock-fluid interactions and carbon sink as carbonates with the aim of gaining understanding of potential carbon cycles in the icy worlds' oceans. Authigenic carbonates associated to cold seeps (a chimney from the Gulf of Cádiz and a clathrite from the Pacific Hydrate Ridge) were investigated for their mineralogical composition and lipid biomarker distribution. Molecular and compound-specific isotopic composition of lipid biomarkers allowed us to infer different carbonate origins in both carbonate scenarios: biogenic methane (clathrite) versus thermogenic methane together with allochthonous carbon (chimney). In the Pacific cold seep, carbonate precipitation of the clathrite was deduced to result from the anaerobic oxidation of methane by syntrophic action of methanotrophic archaea with sulfate-reducing bacteria. The distinct carbon sources (thermogenic methane, pelagic biomass, etc.) and sinks (gas clathrates, clathrite, chimney carbonates) were discussed in the light of potentially similar carbon cycling pathways in analogous icy-moon oceans. We show how the isotopic analysis of carbon may be crucial for detecting biosignatures in icy-world carbon sinks. These considerations may affect the strategy of searching for biosignatures in future space missions to the icy worlds.


Asunto(s)
Metano , Luna , Archaea/metabolismo , Biomarcadores/metabolismo , Carbono , Ciclo del Carbono , Carbonatos , Sedimentos Geológicos/microbiología , Lípidos , Metano/metabolismo , Oxidación-Reducción , Agua
3.
Sci Total Environ ; 755(Pt 2): 142662, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33049523

RESUMEN

Maritime Antarctica is a climate-sensitive region that has experienced a continuous increase of temperature over the last 50 years. This phenomenon accelerates glacier retreat and promotes the exposure of ice-covered surfaces, triggering physico-chemical alteration of the ground and subsequent soil formation. Here, we studied the biogeochemical composition and evolution extent of soil on three recently exposed peninsulas (Fildes, Barton and Potter) on Southwest (SW) King George Island (KGI). Nine soil samples were analyzed for their lipid biomarkers, stable isotope composition, bulk geochemistry and mineralogy. Their biomarkers profiles were compared to those of local fresh biomass of microbial mats (n = 3) and vegetation (1 moss, 1 grass, and 3 lichens) to assess their contribution to the soil organic matter (SOM). The molecular and isotopic distribution of lipids in the soil samples revealed contributions to the SOM dominated by biogenic sources, mostly vegetal (i.e. odd HMW n-alkanes distributions and generally depleted δ13C ratios). Microbial sources were also present to a lesser extent (i.e. even LMW n-alkanes and n-alkanoic acids, heptadecane, 1-alkenes, 9-octadecenoic acid, or iso/anteiso 15: 0 and 17:0 alkanoic acids). Additional contribution from petrogenic sources (bedrock erosion-derived hydrocarbons) was also considered although found to be minor. Results from mineralogy (relative abundance of plagioclases and virtual absence of clay minerals) and bulk geochemistry (low chemical weathering indexes) suggested little chemical alteration of the original geology. This together with the low content of total nitrogen and organic carbon, as well as moderate microbial activity in the soils, confirmed little edaphological development on the recently-exposed KGI surfaces. This study provides molecular and isotopic fingerprints of SOM composition in young Antarctic soils, and contributes to the understanding of soil formation and biogeochemistry in this unexplored region which is currently being affected by thermal destabilization.

4.
Space Sci Rev ; 216(8): 138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281235

RESUMEN

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

5.
Astrobiology ; 13(10): 991-1004, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24143869

RESUMEN

In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.


Asunto(s)
Medio Ambiente Extraterrestre , Júpiter , Exobiología , Hielo , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-23896294

RESUMEN

We have carried out a systematic study of abiotic precipitation at different temperatures of several Mg and Ca carbonates (calcite, nesquehonite, hydrocalcite) present in carbonaceous chondrites. This study highlights the capability of Raman spectroscopy as a primary tool for performing full mineralogical analysis. The precipitation reaction and the structure of the resulting carbonates were monitored and identified with Raman spectroscopy. Raman spectroscopy enabled us to confirm that the precipitation reaction is very fast (minutes) when Ca(II) is present in the solution, whereas for Mg(II) such reactions developed at rather slow rates (weeks). We also observed that both the composition and the reaction mechanisms depended on temperature, which might help to clarify several issues in the fields of planetology and geology, because of the environmental implications of these carbonates on both terrestrial and extraterrestrial objects.


Asunto(s)
Carbonato de Calcio/química , Magnesio/química , Espectrometría Raman/métodos , Precipitación Química , Cinética , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...