Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1184070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455720

RESUMEN

Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.

2.
Environ Sci Technol ; 56(19): 13975-13984, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36103595

RESUMEN

Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 µm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 µm × 35 µm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 µm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pseudomonas putida , Factores Quimiotácticos/metabolismo , Quimiotaxis , Dimetilpolisiloxanos/metabolismo , Hexaclorociclohexano/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Porosidad , Pseudomonas putida/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
J Hazard Mater ; 433: 128764, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390620

RESUMEN

Lindane and other 1,2,3,4,5,6-hexachlorocyclohexane (HCH) isomers are persistent organic pollutants highly hydrophobic, which hampers their availability and biodegradation. This work aimed at (i) investigating genes encoding enzymes involved in HCH degradation in the bacterium Sphingobium sp. D4, (ii) selecting strains, from a collection of environmental isolates, able to mobilize HCHs from contaminated soil, and (iii) analysing the biodegradation of HCHs by strain D4 in co-culture with HCH-mobilizing strains or when cultivated with root exudates. Fragments of the same size and similar sequence to linA and linB genes were successfully amplified. Two isolates, Streptomyces sp. M7 and Rhodococcus erythropolis ET54b able to produce emulsifiers and to mobilize HCH isomers from soil were selected. Biodegradation of HCH isomers by strain D4 was enhanced when co-inoculated with HCH mobilizing strains or when cultivated with root exudates. The degrader strain D4 was able to decompose very efficiently HCHs isomers, reducing their concentration in soil slurries by more than 95% (from an average initial amount of 50 ± 8 mg HCH kg-1 soil) in 9 days. The combination of HCH-degrading and HCH-mobilizing strains can be considered a promising inoculum for future soil bioremediation studies using bioaugmentation techniques or in combination with plants in rhizodegradation assays.


Asunto(s)
Contaminantes del Suelo , Sphingomonadaceae , Biodegradación Ambiental , Técnicas de Cocultivo , Exudados y Transudados/química , Exudados y Transudados/metabolismo , Hexaclorociclohexano/química , Suelo/química , Contaminantes del Suelo/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
4.
Chemosphere ; 277: 130272, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33773318

RESUMEN

The diversity of cultivable bacteria associated with plants from phytomanaged soils with mixed trace metal (TM) and polycyclic aromatic hydrocarbon (PAH) contamination in Pierrelaye (France) was evaluated. The emphasis was on the cultivable bacterial community since the overall objective is to obtain inoculants to improve the remediation of this type of contaminated site. Root endophytic and rhizosphere soil bacterial counts were determined, and isolates were pooled by amplified rDNA restriction analysis and identified by 16S rDNA sequencing. Isolates were further characterized for the production of plant growth-promoting (PGP) substances, and resistance to TM. The selected strains were evaluated for their ability to degrade PAHs. The potential of cell-free microbial supernatant to increase the mobilisation of PAHs from the polluted soil of Pierrelaye was also evaluated. Proteobacteria and Actinobacteria dominated the collection of isolates, and differences in taxonomic diversity were observed between plant species (Populus or Zea mays) and depending on the remediation treatment (Populus inoculation with mycorrhizae or Populus intercropping with Alnus). The majority of isolates exhibited at least one of the tested PGP traits, as well as resistance to more than one TM. Several rhizosphere, endophyte and even one bulk soil isolate showed high rates of fluoranthene and pyrene reduction. The endophyte Rhizobium strain MR28 isolated from maize and degrading pyrene produced bioemulsifying molecules capable of improving the availability of PAHs from the soil of Pierrelaye. A selection of the most interesting strains was made for further re-inoculation experiments in order to assess their potential in rhizoremediation processes.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Endófitos/genética , Francia , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
Sci Total Environ ; 630: 275-286, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477825

RESUMEN

Nickel (Ni) agromining of ultramafic soils has been proposed as an eco-friendly option for metal recovery, which can also improve the fertility and quality of these low productive soils. The selection of adequate plant species and the analysis of their performance under the different climatic conditions are of interest for optimising the process and evaluating its full viability. A one-year field experiment was carried out to evaluate the viability of the two Ni-hyperaccumulating Mediterranean species, Alyssum murale and Leptoplax emarginata, for agromining purposes in ultramafic soils under a humid-temperate climate. Field plots of 50 m2 were established and the soil was fertilised with gypsum and inorganic NPK fertilisers prior to cropping. Alyssum murale produced a slightly higher Ni yield than L. emarginata, but Ni bioaccumulation was dependent on the plant phenological stage for both species, being maximal at mid-flowering (4.2 and 3.0 kg Ni ha-1, respectively). In both species, Ni was mainly stored in the leaves, especially in leaves of vegetative stems, but also in flowers and fruits in the case of L. emarginata. The main contributors to Ni yield of A. murale were flowering stems and their leaves, while for L. emarginata they were flowering stems and fruits. Implementing the agromining system increased soil nutrient availability, and modified microbial community structure and metabolic activity (due to fertilisation and plant root activity). The soil bacterial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the agromining crops modified the relative abundance of some phyla (increasing Proteobacteria, Bacteroidetes and Nitrospirae and reducing Acidobacteria and Planctomycetes). Cultivating A. murale increased the densities of total culturable bacteria, while L. emarginata selected Ni-tolerant bacteria in its rhizosphere. In summary, both species showed great potential for their use in Ni agromining systems, although optimising soil and crop management practices could improve the phytoextraction efficiency.

6.
Environ Sci Pollut Res Int ; 22(15): 11690-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25850741

RESUMEN

The microbial communities of bulk soil of rice paddy fields under an ancient organic agriculture regimen, consisting on an alfalfa-rice rotation system, were characterized. The drained soil of two adjacent paddies at different stages of the rotation was compared before rice seeding and after harvesting. The relationships among the soil microbial, physicochemical, and biochemical parameters were investigated using multivariate analyses. In the first year of rice cropping, aerobic cultivable heterotrophic populations correlated with lineages of presumably aerobic bacteria (e.g., Sphingobacteriales, Sphingomonadales). In the second year of rice cropping, the total C content correlated with presumable anaerobic bacteria (e.g., Anaerolineae). Independently of the year of rice cropping, before rice seeding, proteolytic activity correlated positively with the cultivable aerobic heterotrophic and ammonifier populations, the soil catabolic profile and with presumable aerobes (e.g., Sphingobacteriales, Rhizobiales) and anaerobes (e.g., Bacteroidales, Anaerolineae). After harvesting, strongest correlations were observed between cultivable diazotrophic populations and bacterial groups described as comprising N2 fixing members (e.g., Chloroflexi-Ellin6529, Betaproteobacteria, Alphaproteobacteria). It was demonstrated that chemical parameters and microbial functions were correlated with variations on the total bacterial community composition and structure occurring during rice cropping. A better understanding of these correlations and of their implications on soil productivity may be valid contributors for sustainable agriculture practices, based on ancient processes.


Asunto(s)
Fenómenos Químicos , Medicago sativa/crecimiento & desarrollo , Agricultura Orgánica/métodos , Oryza/crecimiento & desarrollo , Rotación , Microbiología del Suelo , Suelo/química , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Análisis Multivariante , Fijación del Nitrógeno
7.
Appl Environ Microbiol ; 79(17): 5094-103, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793627

RESUMEN

The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.


Asunto(s)
Arthrobacter/crecimiento & desarrollo , Arthrobacter/metabolismo , Brassicaceae/crecimiento & desarrollo , Brassicaceae/metabolismo , Níquel/metabolismo , Microbiología del Suelo , Biomasa , Medios de Cultivo/química , Minerales/metabolismo , Modelos Teóricos , Compuestos Orgánicos/análisis , Brotes de la Planta/química , Brotes de la Planta/crecimiento & desarrollo , Oligoelementos/análisis
8.
Environ Pollut ; 178: 202-10, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23583940

RESUMEN

The performance of Cytisus striatus in association with different microbial inoculant treatments on the dissipation of the insecticide hexachlorocyclohexane (HCH) was studied. Two soils with different organic matter (A and B soil) content were spiked with 0 or 65 mg HCH kg(-1). Plants were either not inoculated (NI), or inoculated with the endophyte Rhodococcus erythropolis ET54b and the HCH-degrader Sphingomonas sp. D4 separately or in combination (ET, D4 and ETD4). Unplanted pots were also established. HCH phytotoxicity was more pronounced in the B soil. Soil HCH concentrations in unplanted pots were similar to initial concentrations, whereas concentrations were reduced after plant growth: by 20% and 8% in A and B soil, respectively. Microbial inoculants also modified HCH dissipation, although effects were soil-dependent. Inoculation with the combination of strains (ETD4) led to a significant enhancement in HCH dissipation: up to 53% in the A soil and 43% in the B soil.


Asunto(s)
Cytisus/fisiología , Hexaclorociclohexano/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo/química , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biodegradación Ambiental , Hexaclorociclohexano/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...