Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 82(1): 235-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38064100

RESUMEN

Oxidative stress (OS) plays a key role in the development of cardiovascular diseases (CVD) in three major ways: reactive oxygen species (ROS)-induced reduction of nitric oxide (NO) bioavailability, ROS-induced inflammation and ROS-induced mitochondrial dysfunction. Oxidation of lipid molecules under the action of ROS leads to damage to membrane structures, changes the functioning of membrane-bound enzymes, and impairs membrane permeability and stability. An increase in OS results in the occurrence of endothelial dysfunction and drug tolerance, side effects, requiring discontinuation of drugs. All of these are significant problems of cardiotherapy. Therefore, the search for new alternative NO donors continues. The present research was aimed at studying the protective effect of 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate (NS) on the cardiovascular system on mouse myocardial ischemia (MI) model. The NS hybrid molecule includes a synthetic vitamin B6 analog 2-ethyl-3-hydroxy-6-methylpyridine (an antioxidant) and 2-nitroxysuccinic acid (a source of nitric oxide). Using the electron paramagnetic resonance (EPR) method and biochemical methods, we showed that the pronounced ability of NS to release NO is favorably combines with the capacity to prevent OS due to mechanisms such as suppression of the lipid peroxidation (LPO) process, antiradical activity and inhibition of the mitochondrial membrane-bound monoamine oxidase A (MAO-A). Using histological methods, we established that the administration of NS (10 mg/kg, i.p.) reduces the number of ischemic fibers and protects cardiomyocytes against ischemia injury. Thus, the complex protective effect allows us to consider NS as an alternative NO donor and a candidate for the development of a new pharmaceutical agent for the treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Isquemia Miocárdica , Ratones , Animales , Especies Reactivas de Oxígeno , Hidrocortisona/farmacología , Epinefrina/farmacología , Óxido Nítrico , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/tratamiento farmacológico , Estrés Oxidativo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología
2.
Antioxidants (Basel) ; 10(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34573083

RESUMEN

In the case of various pathologies, an imbalance between ROS generation and the endogenous AOS can be observed, which leads to excessive ROS accumulation, intensification of LPO processes, and oxidative stress. For the prevention of diseases associated with oxidative stress, drugs with antioxidant activity can be used. The cytotoxic, antioxidant, and NO-donor properties of the new hybrid compound B6NO (di(3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridinium) salt of 2-(nitrooxy)butanedioic acid) were studied. It was determined that B6NO chelates iron ions by 94%, which indicates B6NO's ability to block the Fenton reaction. The hybrid compound B6NO inhibits the process of initiated lipid peroxidation more effectively than pyridoxine. It was shown that B6NO exhibits antioxidant properties by decreasing ROS concentration in normal cells during the oxidative stress induction by tert-Butyl peroxide. At the same time, the B6NO antioxidant activity on tumor cells was significantly lower. B6NO significantly increases the intracellular nitrogen monoxide accumulation and showed low cytotoxicity for normal cells (IC50 > 4 mM). Thus, the results indicate a high potential of the B6NO as an antioxidant compound.

3.
Front Pharmacol ; 10: 1277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780929

RESUMEN

Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA