Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(37)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39134419

RESUMEN

Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca2+ influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca2+ influx promote increases in both synaptic strength and dendritic spine size through activation of Ca2+-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca2+ influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca2+-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-ß (Aß) may impair learning and memory through biasing NMDAR Ca2+ signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aß-mediated impairment of NMDAR synaptic Ca2+ influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aß acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca2+ influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aß-mediated synaptic dysfunction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Péptidos beta-Amiloides , Calcineurina , Espinas Dendríticas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Transducción de Señal , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Espinas Dendríticas/metabolismo , Calcineurina/metabolismo , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Masculino , Femenino , Péptidos beta-Amiloides/metabolismo , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Depresión Sináptica a Largo Plazo/fisiología , Hipocampo/metabolismo , Hipocampo/patología
3.
Neuron ; 111(3): 362-371.e6, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395772

RESUMEN

Dendritic spines can be directly connected to both inhibitory and excitatory presynaptic terminals, resulting in nanometer-scale proximity of opposing synaptic functions. While dually innervated spines (DiSs) are observed throughout the central nervous system, their developmental timeline and functional properties remain uncharacterized. Here we used a combination of serial section electron microscopy, live imaging, and local synapse activity manipulations to investigate DiS development and function in rodent hippocampus. Dual innervation occurred early in development, even on spines where the excitatory input was locally silenced. Synaptic NMDA receptor currents were selectively reduced at DiSs through tonic GABAB receptor signaling. Accordingly, spine enlargement normally associated with long-term potentiation on singly innervated spines (SiSs) was blocked at DiSs. Silencing somatostatin interneurons or pharmacologically blocking GABABRs restored NMDA receptor function and structural plasticity to levels comparable to neighboring SiSs. Thus, hippocampal DiSs are stable structures where function and plasticity are potently regulated by nanometer-scale GABAergic signaling.


Asunto(s)
Espinas Dendríticas , Receptores de N-Metil-D-Aspartato , Espinas Dendríticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico , Plasticidad Neuronal/fisiología
4.
iScience ; 25(11): 105288, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36304124

RESUMEN

Previously, we found that amyloid-beta (Aß) competitively inhibits the kinesin motor protein KIF11 (Kinesin-5/Eg5), leading to defects in the microtubule network and in neurotransmitter and neurotrophin receptor localization and function. These biochemical and cell biological mechanisms for Aß-induced neuronal dysfunction may underlie learning and memory defects in Alzheimer's disease (AD). Here, we show that KIF11 overexpression rescues Aß-mediated decreases in dendritic spine density in cultured neurons and in long-term potentiation in hippocampal slices. Furthermore, Kif11 overexpression from a transgene prevented spatial learning deficits in the 5xFAD mouse model of AD. Finally, increased KIF11 expression in neuritic plaque-positive AD patients' brains was associated with better cognitive performance and higher expression of synaptic protein mRNAs. Taken together, these mechanistic biochemical, cell biological, electrophysiological, animal model, and human data identify KIF11 as a key target of Aß-mediated toxicity in AD, which damages synaptic structures and functions critical for learning and memory in AD.

5.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34789478

RESUMEN

Secreted amyloid-ß (Aß) peptide forms neurotoxic oligomeric assemblies thought to cause synaptic deficits associated with Alzheimer's disease (AD). Soluble Aß oligomers (Aßo) directly bind to neurons with high affinity and block plasticity mechanisms related to learning and memory, trigger loss of excitatory synapses and eventually cause cell death. While Aßo toxicity has been intensely investigated, it remains unclear precisely where Aßo initially binds to the surface of neurons and whether sites of binding relate to synaptic deficits. Here, we used a combination of live cell, super-resolution and ultrastructural imaging techniques to investigate the kinetics, reversibility and nanoscale location of Aßo binding. Surprisingly, Aßo does not bind directly at the synaptic cleft as previously thought but, instead, forms distinct nanoscale clusters encircling the postsynaptic membrane with a significant fraction also binding presynaptic axon terminals. Synaptic plasticity deficits were observed at Aßo-bound synapses but not closely neighboring Aßo-free synapses. Thus, perisynaptic Aßo binding triggers spatially restricted signaling mechanisms to disrupt synaptic function. These data provide new insight into the earliest steps of Aßo pathology and lay the groundwork for future studies evaluating potential surface receptor(s) and local signaling mechanisms responsible for Aßo binding and synapse dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Plasticidad Neuronal , Neuronas , Sinapsis
6.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33651103

RESUMEN

A potent γ-secretase modulator (GSM) has been developed to circumvent problems associated with γ-secretase inhibitors (GSIs) and to potentially enable use in primary prevention of early-onset familial Alzheimer's disease (EOFAD). Unlike GSIs, GSMs do not inhibit γ-secretase activity but rather allosterically modulate γ-secretase, reducing the net production of Aß42 and to a lesser extent Aß40, while concomitantly augmenting production of Aß38 and Aß37. This GSM demonstrated robust time- and dose-dependent efficacy in acute, subchronic, and chronic studies across multiple species, including primary and secondary prevention studies in a transgenic mouse model. The GSM displayed a >40-fold safety margin in rats based on a comparison of the systemic exposure (AUC) at the no observed adverse effect level (NOAEL) to the 50% effective AUC or AUCeffective, the systemic exposure required for reducing levels of Aß42 in rat brain by 50%.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/prevención & control , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Fenetilaminas/administración & dosificación , Piridazinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
7.
Langmuir ; 36(23): 6569-6579, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32432881

RESUMEN

γ-Secretase is a multisubunit complex that catalyzes intramembranous cleavage of transmembrane proteins. The lipid environment forms membrane microdomains that serve as spatio-temporal platforms for proteins to function properly. Despite substantial advances in the regulation of γ-secretase, the effect of the local membrane lipid microenvironment on the regulation of γ-secretase is poorly understood. Here, we characterized and quantified the partitioning of γ-secretase and its substrates, the amyloid precursor protein (APP) and Notch, into lipid bilayers using solid-supported model membranes. Notch substrate is preferentially localized in the liquid-disordered (Ld) lipid domains, whereas APP and γ-secretase partition as single or higher complex in both phases but highly favor the ordered phase, especially after recruiting lipids from the ordered phase, indicating that the activity and specificity of γ-secretase against these two substrates are modulated by membrane lateral organization. Moreover, time-elapse measurements reveal that γ-secretase can recruit specific membrane components from the cholesterol-rich Lo phase and thus creates a favorable lipid environment for substrate recognition and therefore activity. This work offers insight into how γ-secretase and lipid modulate each other and control its activity and specificity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Membrana Dobles de Lípidos , Precursor de Proteína beta-Amiloide , Lípidos de la Membrana , Microdominios de Membrana
8.
J Alzheimers Dis ; 73(4): 1541-1554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31958080

RESUMEN

BACKGROUND: In the amyloid hypothesis of Alzheimer's disease (AD), the dysregulation of amyloid-ß protein (Aß) production and clearance leads to amyloid deposits, tau tangles, neuronal loss, and cognitive dysfunction. Thus far, therapies targeting the enzymes responsible for Aß production have been found ineffective or having significant side effects. OBJECTIVE: To test whether a γ-secretase modulator, BPN-15606, is an effective disease-modifying or preventative treatment in the PSAPP mouse model of AD. METHODS: We treated pre-plaque (3-month-old) and post-plaque (6-month-old) PSAPP AD transgenic mice for 3 months and examined behavioral, biochemical, and pathological end points. RESULTS: BPN-15606 attenuated cognitive impairment and reduced amyloid plaque load, microgliosis, and astrogliosis associated with the AD phenotype of PSAPP mice when administered to pre-plaque (3-month-old) but was ineffective when administered to post-plaque (6-month-old) mice. No treatment-related toxicity was observed. CONCLUSION: BPN-15606 appears efficacious when administered prior to significant pathology.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Fenetilaminas/uso terapéutico , Piridazinas/uso terapéutico , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/psicología , Gliosis , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Fenetilaminas/efectos adversos , Placa Amiloide/genética , Placa Amiloide/prevención & control , Equilibrio Postural/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Piridazinas/efectos adversos
9.
Neurobiol Dis ; 127: 390-397, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928642

RESUMEN

Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders. The mechanism of pathogenesis in TSC is not entirely clear, but TSC-related neurological symptoms are accompanied by excessive glutamatergic activity and altered synaptic spine structures. To address whether extrasynaptic (e)NMDA-type glutamate receptor (NMDAR) antagonists, as opposed to antagonists that block physiological phasic synaptic activity, can ameliorate the synaptic and behavioral features of this disease, we utilized the Tsc2+/- mouse model of TSC to measure biochemical, electrophysiological, histological, and behavioral parameters in the mice. We found that antagonists that preferentially block tonic activity as found at eNMDARs, particularly the newer drug NitroSynapsin, provide biological and statistically significant improvement in Tsc2+/- phenotypes. Accompanying this improvement was correction of activity in the p38 MAPK-TSC-Rheb-mTORC1-S6K1 pathway. Deficits in hippocampal long-term potentiation (LTP), histological loss of synapses, and behavioral fear conditioning in Tsc2+/- mice were all improved after treatment with NitroSynapsin. Taken together, these results suggest that amelioration of excessive excitation, by limiting aberrant eNMDAR activity, may represent a novel treatment approach for TSC.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hipocampo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Esclerosis Tuberosa/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
10.
J Alzheimers Dis ; 67(2): 541-553, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30584143

RESUMEN

Progressive accumulation of aggregation-prone proteins, amyloid-ß (Aß) and hyperphosphorylated tau (p-tau), are the defining hallmarks of Alzheimer's disease (AD). The mechanisms by which Aß and p-tau are transmitted throughout the diseased brain are not yet completely understood. Interest in exosome research has grown dramatically over the past few years, specifically due to their potential role as biomarkers for staging of neurodegenerative diseases, including AD. Despite their diagnostic utility, the pathogenic potential of exosomes has yet to be fully elucidated. In this study, we use a series of recombinant tau antibodies to characterize a new model of human tau in vivo. Exosome suspensions derived from neuronally-differentiated, human induced pluripotent stem cells that express the repeat domain of tau P301L and V337M mutations (NiPSCEs) were injected into the wild-type mouse brain and pathological changes were characterized by immunostaining at one- (1 m) and two-month (2 m) post-injection. We found that tau inclusions were present throughout the brain at 2 m post-injection, which were detectable using antibodies raised against full-length tau (K9JA) and misfolded tau (MC1). Furthermore, we found that phosphorylated tau immunoreactivity was elevated 1 m post-injection, which was surprisingly normalized after 2 m. Finally, we observed extensive degeneration of neuronal dendrites in both ipsilateral and contralateral hippocampi in NiPSCE treated mice. In summary, we demonstrate that exosomes are sufficient to cause long-distance propagation of tau pathology and neurodegeneration in vivo. These novel findings support an active role of exosomes in AD pathogenesis.


Asunto(s)
Exosomas/química , Neuronas/química , Neuronas/efectos de los fármacos , Proteínas tau/toxicidad , Animales , Anticuerpos/química , Química Encefálica/genética , Dendritas/patología , Femenino , Hipocampo/patología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Fosforilación , Deficiencias en la Proteostasis/patología , Proteínas tau/genética , Proteínas tau/inmunología
11.
Neurobiol Dis ; 84: 99-108, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25796565

RESUMEN

Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteína S/metabolismo , Animales , Humanos
12.
Hum Mol Genet ; 21(18): 4007-20, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22692682

RESUMEN

Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD.


Asunto(s)
Distrofina/genética , Furanos/farmacología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Fenoles/farmacología , Bases de Schiff/farmacología , Tiazolidinas/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Distrofina/metabolismo , Furanos/administración & dosificación , Furanos/farmacocinética , Gentamicinas/administración & dosificación , Gentamicinas/farmacología , Inyecciones Intramusculares , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Oxadiazoles/administración & dosificación , Oxadiazoles/farmacocinética , Oxadiazoles/farmacología , Fenoles/administración & dosificación , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/farmacología , Sistemas de Lectura , Bases de Schiff/administración & dosificación , Tiazolidinas/administración & dosificación , Tiazolidinas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA