Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 14(34): 3355, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997282

RESUMEN

Correction for 'Novel 90Sr analysis of environmental samples by Ion-Laser InterAction Mass Spectrometry' by Maki Honda et al., Anal. Methods, 2022, 14, 2732-2738, https://doi.org/10.1039/D2AY00604A.

2.
Anal Methods ; 14(28): 2732-2738, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35789229

RESUMEN

The sensitive analysis of 90Sr with accelerator mass spectrometry (AMS) was developed to advance environmental radiology. One advantage of AMS is the ability to analyze environmental samples with 90Sr/88Sr atomic ratios of 10-14 in following a simple chemical separation. Three different IAEA samples with known 90Sr concentrations (moss-soil, animal bone, Syrian soil: 1 g each) were analyzed to assess the validity of the chemical separation and the AMS measurement. The 90Sr measurements were conducted on the AMS system VERA combined with the Ion Laser InterAction Mass Spectrometry (ILIAMS) setup at the University of Vienna, which has excellent isobaric separation performance. The isobaric interference of 90Zr in the 90Sr AMS was first largely removed by chemical separation. The separation factor of Zr in two-step column chromatography with Sr resin and anion exchange resin was 106. The 90Zr remaining in the sample was effectively suppressed by ILIAMS. This procedure achieved a limit of detection <0.1 mBq in the 90Sr AMS, which is lower than typical ß-ray detection. The agreement between AMS measurements and nominal values for the 90Sr concentrations of IAEA samples indicated that the new highly-sensitive 90Sr analysis in the environmental samples with AMS is reliable.


Asunto(s)
Suelo , Radioisótopos de Estroncio , Animales , Rayos Láser , Espectrometría de Masas/métodos , Radioisótopos de Estroncio/análisis
3.
Front Plant Sci ; 12: 622795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708230

RESUMEN

The geomagnetic field (GMF) has been present since the beginning of plant evolution. Recently, some researchers have focused their efforts on employing magnetic fields (MFs) higher than GMF to improve the seed germination, growth, and harvest of agriculturally important crop plants, as the use of MFs is an inexpensive and environment-friendly technique. In this study, we have employed different treatments of MF at 7 mT (milliTesla) at different time points of exposure, including 1, 3, and 6 h. The extended exposure was followed by five consecutive days at 6 h per day in barley seeds. The results showed a positive impact of MF on growth characteristics for 5-day-old seedlings, including seed germination rate, root and shoot length, and biomass weight. Furthermore, ~5 days of delay of flowering in pre-treated plants was also observed. We used a shotgun proteomics approach to identify changes in the protein signatures of root and shoot tissues under MF effects. In total, we have identified 2,896 proteins. Thirty-eight proteins in the shoot and 15 proteins in the root showed significant changes under the MF effect. Proteins involved in primary metabolic pathways were increased in contrast to proteins with a metal ion binding function, proteins that contain iron ions in their structure, and proteins involved in electron transfer chain, which were all decreased significantly in the treated tissues. The upregulated proteins' overall biological processes included carbohydrate metabolic process, oxidation-reduction process, and cell redox homeostasis, while down-regulated processes included translation and protein refolding. In general, shoot response was more affected by MF effect than root tissue, leading to the identification of 41 shoot specific proteins. This study provides an initial insight into the proteome regulation response to MF during barley's seedling stage.

4.
Environ Sci Technol ; 46(16): 8637-44, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22823566

RESUMEN

Concentrations of gases and particulate matter have been proven to be affected by meteorological and geographical variables from urban locations to high mountain clean air sites. Following our previous research in Vienna, we summarize here new findings about concentration levels of iodine isotopes in aerosols collected at two Alpine meteorological stations, Sonnblick (Austria) and Zugspitze (Germany) during 2001. The present study mainly focuses on the effect of altitude on the anthropogenic concentration of (129)I and on the isotopic ratio (129)I/(127)I. Iodine was separated from matrix elements by using either an anion exchange method or solvent extraction, and was analyzed by ICP-MS and AMS. Over the altitude change from Vienna to Zugspitze and Sonnblick (202 m to 2962 m and 3106 m above sea level), stable iodine level decreased from an average of 0.94 ng m(-3) to 0.52 ng m(-3) and 0.62 ng m(-3), respectively. Similarly, (129)I concentrations at both Alpine stations were about 1 order of magnitude lower (10(4) atoms m(-3)) than values obtained for Vienna (10(5) atoms m(-3)) and reveal a strong vertical concentration gradient of (129)I. A high degree of variability is observed, which is due to wide variation in the origin of air masses. Furthermore, air trajectory analysis demonstrates the importance of large scale air transport mostly from southeast Europe for influencing Sonnblick whereas influence from northwest Europe is strong at Zugspitze. In contrast to (129)I, a higher concentration of (7)Be was found at higher altitude stations compared to Vienna which probably results from its production in the upper atmosphere.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/análisis , Altitud , Isótopos de Yodo/análisis , Radioisótopos de Yodo/análisis , Resinas de Intercambio Aniónico , Austria , Alemania , Espectrometría de Masas
5.
Int J Mass Spectrom ; 315(4): 55-59, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23576897

RESUMEN

New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied. The laser light induced a significant change in oxygen, sulfur and chlorine negative ion production from a AgCl target. Approximately 100 mW of laser light reduced the sulfur to chlorine ratio by one order of magnitude. The effect was found to depend on laser power and ion source parameters but not on the laser wavelength. The time constant of the effect varied from a few seconds up to several minutes. Experiments were first performed at the ion beam facility GUNILLA at University of Gothenburg with macroscopic amounts of sulfur. The results were then reproduced at the VERA AMS facility with chemically cleaned AgCl targets containing ∼1 ppm sulfur. The physical explanation behind the effect is still unclear. Nevertheless, the technique has been successfully applied during a regular AMS measurement of 36Cl.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...