Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1070, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326317

RESUMEN

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.


Asunto(s)
Núcleo Celular , Membrana Nuclear , Animales , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Mamíferos
2.
Biomaterials ; 281: 121350, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033903

RESUMEN

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured through ink-jet-based 3D printing using bacterial biofilm inhibiting formulations without the need for eluting antibiotics or coatings. Candidate monomers were formulated and their processability and reliability demonstrated. Formulations for in vivo evaluation of the 3D printed structures were selected on the basis of their in vitro bacterial biofilm inhibitory properties and lack of mammalian cell cytotoxicity. In vivo in a mouse implant infection model, Pseudomonas aeruginosa biofilm formation on poly-TCDMDA was reduced by ∼99% when compared with medical grade silicone. Whole mouse bioluminescence imaging and tissue immunohistochemistry revealed the ability of the printed device to modulate host immune responses as well as preventing biofilm formation on the device and infection of the surrounding tissues. Since 3D printing can be used to manufacture devices for both prototyping and clinical use, the versatility of ink-jet based 3D-printing to create personalised functional medical devices is demonstrated by the biofilm resistance of both a finger joint prosthetic and a prostatic stent printed in poly-TCDMDA towards P. aeruginosa and Staphylococcus aureus.


Asunto(s)
Biopelículas , Tinta , Animales , Bacterias , Materiales Biocompatibles/química , Mamíferos , Ratones , Impresión Tridimensional , Pseudomonas aeruginosa , Reproducibilidad de los Resultados , Staphylococcus aureus
3.
Adv Sci (Weinh) ; 8(15): e2100249, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34050725

RESUMEN

As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-based 3D printing can meet this demand by combining functional materials, voxelated manufacturing, and algorithmic design. In this paper composite structures designed with both controlled deformation and reduced biofilm formation are manufactured using two formulations that are deposited selectively and separately. The bacterial biofilm coverage of the resulting composites is reduced by up to 75% compared to commonly used silicone rubbers, without the need for incorporating bioactives. Meanwhile, the composites can be tuned to meet user defined mechanical performance with ±10% deviation. Device manufacture is coupled to finite element modelling and a genetic algorithm that takes the user-specified mechanical deformation and computes the distribution of materials needed to meet this under given load constraints through a generative design process. Manufactured products are assessed against the mechanical and bacterial cell-instructive specifications and illustrate how multifunctional personalization can be achieved using generative design driven multi-material inkjet based 3D printing.


Asunto(s)
Biopelículas , Equipos y Suministros/microbiología , Impresión Tridimensional , Tinta
4.
Adv Biosyst ; 4(6): e2000016, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32329968

RESUMEN

Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable tool for fabricating 3D micro/nanostructures for stem cell niche engineering applications. Herein, biomimetic gelatin methacrylate-based constructs, replicating the precise geometry of the limbal epithelial crypt structures (limbal stem cell "microniches") as an exemplar epithelial niche, are fabricated using 2PP. Human limbal epithelial stem cells (hLESCs) are seeded within the microniches in xeno-free conditions to investigate their ability to repopulate the crypts and the expression of various differentiation markers. Cell proliferation and a zonation in cell phenotype along the z-axis are observed without the use of exogenous signaling molecules. Significant differences in cell phenotype between cells located at the base of the microniche and those situated towards the rim are observed, demonstrating that stem cell fate is strongly influenced by its location within a niche and the geometrical details of where it resides. This study provides insight into the influence of the niche's spatial geometry on hLESCs and demonstrates a flexible approach for the fabrication of biomimetic crypt-like structures in epithelial tissues. This has significant implications for regenerative medicine applications and can ultimately lead to implantable synthetic "niche-based" treatments.


Asunto(s)
Materiales Biomiméticos/química , Células Epiteliales/metabolismo , Nanoestructuras/química , Nicho de Células Madre , Células Madre/metabolismo , Ingeniería de Tejidos , Células Epiteliales/citología , Humanos , Células Madre/citología
5.
Stem Cell Rev Rep ; 13(3): 430-441, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28573367

RESUMEN

In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation. In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated hydrogels to microfluidic devices.


Asunto(s)
Materiales Biomiméticos/química , Córnea/metabolismo , Células Epiteliales/metabolismo , Hidrogeles/química , Dispositivos Laboratorio en un Chip , Andamios del Tejido/química , Animales , Adhesión Celular , Córnea/citología , Células Epiteliales/citología , Humanos
6.
J Biomed Mater Res B Appl Biomater ; 105(6): 1645-1657, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177716

RESUMEN

A new type of photocrosslinkable polycaprolactone (PCL) based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable Polycaprolactone dimethylacrylate (PCLDMA) was synthesized and mixed with poly(ethylene glycol) diacrylate (PEGDA) to prepare an ink with a suitable viscosity for inkjet printing. The ink performance under different printing environments, initiator concentrations, and post processes was studied. This showed that a nitrogen atmosphere during printing was beneficial for curing and material property optimization, as well as improving the quality of structures produced. A simple structure, built in the z-direction, demonstrated the potential for this material for the production of 3D printed objects. Cell tests were carried out to investigate the biocompatibility of the developed ink. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1645-1657, 2017.


Asunto(s)
Implantes Experimentales , Tinta , Ensayo de Materiales , Poliésteres , Impresión Tridimensional , Animales , Ratones , Células 3T3 NIH , Poliésteres/química , Poliésteres/farmacología
7.
Mater Sci Eng C Mater Biol Appl ; 67: 294-303, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287125

RESUMEN

Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7µm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour.


Asunto(s)
Tecnología Biomédica/métodos , Rayos Láser , Titanio/farmacología , Aleaciones , Animales , Muerte Celular/efectos de los fármacos , Ratones , Células 3T3 NIH , Óxidos/química , Espectroscopía de Fotoelectrones , Propiedades de Superficie
8.
J Mater Sci Mater Med ; 26(1): 5328, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25577210

RESUMEN

Carbomers, cross-linked poly(acrylic acid) microgels, have been widely used in pharmaceutical formulations as swollen hydrogels. Agarose, whose thermoreversibility may be exploited for drug loading, forms a gel with a mechanism involving coil-helix transition at about 36 °C. In this work carbomer microgels were combined with agarose networks in a semi-interpenetrating polymer network structure, aiming at obtaining suitable delivery systems for the loading and release of molecules with poor bioavailability but high therapeutic interest, like resveratrol. The rheological properties of the formulations and their in vitro cytocompatibility were studied and optimized acting on the neutralizing agent (triethylamine (N,N-diethylethanamine), triethanolamine (tris(2-hydroxyethyl)amine) and sodium hydroxide) and amount of OH donors (1,2-propanediol and glycerol). As a preparation method, autoclaving was introduced to simultaneously obtain heating and sterilising. Among the different neutralizing agents, NaOH was chosen to avoid the use of amines, considering the final application. Without the addition of alcohols as typical OH donors to induce Carbomer gelification, gels with appropriate rheological properties and stability were produced. For this formulation, the release of resveratrol after 7 days was about 80 % of the loaded mass, suggesting it is an interesting approach to be exploited for the development of innovative resveratrol delivery systems.


Asunto(s)
Resinas Acrílicas/química , Reactivos de Enlaces Cruzados/química , Geles , Sefarosa/química , Estilbenos/administración & dosificación , Animales , Línea Celular , Humanos , Ratones , Resveratrol , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA