Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(10): e0141101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26484541

RESUMEN

For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using archival depth, temperature and light data for geolocations have been too coarse to resolve detailed ocean habitat utilization. We combined tag data with OHC estimated from ocean circulation and transport models in an optimization framework that substantially improved geolocation accuracy over SST-based tracks. The OHC-based movement track provided the first quantitative evidence that many of the tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC method provides a new quantitative tool for studying dynamic use of ocean habitats, migration processes and responses to environmental changes by fishes, and further, improves ocean animal tracking and extends satellite-based animal tracking data for other potential physical, ecological, and fisheries applications.


Asunto(s)
Migración Animal/fisiología , Ecosistema , Peces/fisiología , Calor , Animales , Océanos y Mares , Dinámica Poblacional , Tecnología de Sensores Remotos
2.
BMC Genet ; 15: 141, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494814

RESUMEN

BACKGROUND: Misidentifications between exploited species may lead to inaccuracies in population assessments, with potentially irreversible conservation ramifications if overexploitation of either species is occurring. A notable showcase is provided by the realization that the roundscale spearfish (Tetrapturus georgii), a recently validated species, has been historically misidentified as the morphologically very similar and severely overfished white marlin (Kajikia albida) (IUCN listing: Vulnerable). In effect, no information exists on the population status and evolutionary history of the enigmatic roundscale spearfish, a large, highly vagile and broadly distributed pelagic species. We provide the first population genetic evaluation of the roundscale spearfish, utilizing nuclear microsatellite and mitochondrial DNA sequence markers. Furthermore, we re-evaluated existing white marlin mitochondrial genetic data and present our findings in a comparative context to the roundscale spearfish. RESULTS: Microsatellite and mitochondrial (control region) DNA markers provided mixed evidence for roundscale spearfish population differentiation between the western north and south Atlantic regions, depending on marker-statistical analysis combination used. Mitochondrial DNA analyses provided strong signals of historical population growth for both white marlin and roundscale spearfish, but higher genetic diversity and effective female population size (1.5-1.9X) for white marlin. CONCLUSIONS: The equivocal indications of roundscale spearfish population structure, combined with a smaller effective female population size compared to the white marlin, already a species of concern, suggests that a species-specific and precautionary management strategy recognizing two management units is prudent for this newly validated billfish.


Asunto(s)
Peces/genética , Animales , Océano Atlántico , Teorema de Bayes , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Especiación Genética , Región de Control de Posición , Repeticiones de Microsatélite , Densidad de Población , Análisis de Secuencia de ADN , Especificidad de la Especie
3.
PLoS One ; 9(11): e112736, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401964

RESUMEN

Data sets from three laboratories conducting studies of movements and migrations of Atlantic swordfish (Xiphias gladius) using pop-up satellite archival tags were pooled, and processed using a common methodology. From 78 available deployments, 38 were selected for detailed examination based on deployment duration. The points of deployment ranged from southern Newfoundland to the Straits of Florida. The aggregate data comprise the most comprehensive information describing migrations of swordfish in the Atlantic. Challenges in using data from different tag manufacturers are discussed. The relative utility of geolocations obtained with light is compared with results derived from temperature information for this deep-diving species. The results show that fish tagged off North America remain in the western Atlantic throughout their deployments. This is inconsistent with the model of stock structure used in assessments conducted by the International Commission for the Conservation of Atlantic Tunas, which assumes that fish mix freely throughout the North Atlantic.


Asunto(s)
Migración Animal , Peces , Estaciones del Año , Animales , Océano Atlántico , América del Norte , Dinámica Poblacional , Tecnología de Sensores Remotos , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...