Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 998904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388188

RESUMEN

Introduction: Current oral treatments for pain in diabetic peripheral neuropathy (DPN) do not affect the progression of DPN i.e., "disease modification." We assessed whether Capsaicin 8% patch treatment can provide pain relief and also restore nerve density and function via nerve regeneration, in both painful (PDPN) and non-painful (NPDPN) diabetic peripheral neuropathy. Methods: 50 participants with PDPN were randomized to receive Capsaicin 8% patch Qutenza with Standard of Care (SOC) (PDPN Q+SOC group), or SOC alone (PDPN SOC group). Pain symptoms were assessed with a diary (Numerical Pain Rating Scale, NRPS) and questionnaires. Investigations included quantitative sensory testing (QST) and distal calf skin biopsies, at baseline and 3 months after baseline visit; subsequent options were 3-monthly visits over 1 year. 25 participants with NPDPN had tests at baseline, and 3 months after all received Capsaicin 8% patch treatment. Results: At 3 months after baseline, PDPN Q+SOC group had reduction in NPRS score (p = 0.0001), but not PDPN SOC group. Short-Form McGill Pain Questionnaire (SF-MPQ) showed significant reductions in scores for overall and other pain descriptors only in the PDPN Q+SOC group. Warm perception thresholds were significantly improved only in the PDPN Q+SOC group (p = 0.02), and correlated with reduction in SF-MPQ overall pain score (p = 0.04). NPDPN Q+SOC group did not report pain during the entire study. Density of intra-epidermal nerve fibers (IENF) with PGP9.5 was increased at 3 months in PDPN Q+SOC (p = 0.0002) and NPDPN Q+SOC (p = 0.002) groups, but not in the PDPN SOC group. Increased sub-epidermal nerve fibers (SENF) were observed with GAP43 (marker of regenerating nerve fibers) only in PDPN Q+SOC (p = 0.003) and NPDPN Q+SOC (p = 0.0005) groups. Pain relief in the PDPN Q+SOC group was correlated with the increased PGP9.5 IENF (p = 0.0008) and GAP43 (p = 0.004), whereas those with lack of pain relief showed no such increase; in some subjects pain relief and increased nerve fibers persisted over months. PGP9.5 IENF increase correlated with axon-reflex vasodilatation in a NPDPN Q+SOC subset (p = 0.006). Conclusions: Capsaicin 8% patch can provide pain relief via nerve regeneration and restoration of function in DPN (disease modification). It may thereby potentially prevent diabetic foot complications, including ulcers.

2.
Front Neurol ; 12: 722875, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489857

RESUMEN

Introduction: Neuropathic pain associated with Non-freezing Cold Injury (NFCI) is a major burden to military service personnel. A key feature of NFCI is reduction of the intra-epidermal nerve fibre density in skin biopsies, in keeping with painful neuropathy. Current oral treatments are generally ineffective and have undesirable side effects. Capsaicin 8% patch (Qutenza) has been shown to be well-tolerated and effective for reducing neuropathic pain, for up to 3 months after a single 30-minute application. Methods: In this single-centre open label study, 16 military participants with NFCI (mean duration 49 months) received 30-minute Capsaicin 8% patch treatment to the feet and distal calf. Pain symptoms were assessed using a pain diary (with the 11-point Numerical Pain Rating Scale, NPRS) and questionnaires, the investigations included skin biopsies, performed before and three months after treatment. Results: Participants showed significant decrease in spontaneous pain (mean NPRS: -1.1, 95% CI: 0.37 to 1.90; p = 0.006), and cold-evoked pain (-1.2, 95% CI: 0.40 to 2.04; p = 0.006). The time-course of pain relief over 3 months was similar to other painful neuropathies. Patient Global Impression of Change showed improvement (p = 0.0001). Skin punch biopsies performed 3 months after the patch application showed significant increase of nerve fibres with structural marker PGP9.5 (intra-epidermal nerve fibres [IENFs], p < 0.0001; sub-epidermal nerve fibres [SENFs]; p =< 0.0001), and of regenerating nerve fibres with their selective marker GAP43 (p = 0.0001). The increase of IENFs correlated with reduction of spontaneous (p = 0.027) and cold-evoked pain (p = 0.019). Conclusions: Capsaicin 8% patch provides an exciting new prospect for treatment of NFCI, with regeneration and restoration of nerve fibres, for the first time, in addition to pain relief.

3.
Curr Opin Support Palliat Care ; 15(2): 125-131, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33905384

RESUMEN

PURPOSE OF REVIEW: Current oral treatments for neuropathic pain associated with chemotherapy-induced peripheral neuropathy (CIPN) have limited clinical efficacy, and undesirable side-effects. Topically delivered treatments have the advantage of avoiding CNS side-effects, while relieving pain. We have reviewed treatments of neuropathic pain associated with CIPN, focusing on the Capsaicin 8% patch, which can provide pain relief for up to 3 months or longer after a single 30-60-min application. RECENT FINDINGS: Capsaicin 8% patch is a licensed treatment in the EU/UK for neuropathic pain and shown to be safe and effective in providing pain relief for patients with CIPN. Repeated daily oral or topical administrations are not required, as with other current treatments. The side-effects are transient and restricted to the time around patch application. New evidence suggests the Capsaicin 8% patch can promote the regeneration and restoration of skin nerve fibres in CIPN, in addition to the pain relief. SUMMARY: The Capsaicin 8% patch is now often a preferred a treatment option for localised neuropathic pain conditions, including the feet and hands in patients with CIPN. Capsaicin 8% patch can be repeated three-monthly, if needed, for a year. In addition to pain relief, it may have a disease-modifying effect.


Asunto(s)
Antineoplásicos , Neuralgia , Administración Tópica , Antineoplásicos/efectos adversos , Capsaicina/uso terapéutico , Humanos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Manejo del Dolor
4.
J Pain Res ; 12: 2039-2052, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308732

RESUMEN

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) with associated chronic pain is a common and disabling condition. Current treatments for neuropathic pain in CIPN are largely ineffective, with unfavorable side-effects. The capsaicin 8% patch (capsaicin 179 mg patch) is approved for the treatment of neuropathic pain: a single topical cutaneous application can produce effective pain relief for up to 12 weeks. We assessed the therapeutic potential of capsaicin 8% patch in patients with painful CIPN, and its mechanism of action. PATIENTS AND METHODS: 16 patients with chronic painful CIPN (mean duration 2.5 years), in remission for cancer and not receiving chemotherapy, were treated with 30 min application of capsaicin 8% patch to the feet. Symptoms were monitored using the 11-point numerical pain rating scale (NPRS), and questionnaires. Investigations were performed at baseline and three months after patch application, including skin biopsies with a range of markers, and quantitative sensory testing (QST). RESULTS: Patients reported significant reduction in spontaneous pain (mean NPRS: -1.27; 95% CI 0.2409 to 2.301; p=0.02), touch-evoked pain (-1.823; p=0.03) and cold-evoked pain (-1.456; p=0.03). Short-Form McGill questionnaire showed a reduction in neuropathic (p=0.0007), continuous (p=0.01) and overall pain (p=0.004); Patient Global Impression of Change showed improvement (p=0.001). Baseline skin biopsies showed loss of intra-epidermal nerve fibers (IENF), and also of sub-epidermal nerve fibers quantified by image analysis. Post-patch application skin biopsies showed a significant increase towards normalization of intra-epidermal and sub-epidermal nerve fibers (for IENF: structural marker PGP9.5, p=0.009; heat receptor TRPV1, p=0.027; regenerating nerve marker GAP43, p=0.04). Epidermal levels of Nerve Growth Factor (NGF), Neurotrophin-3 (NT-3), and Langerhans cells were also normalized. QST remained unchanged and there were no systemic side-effects, as in previous studies. CONCLUSION: Capsaicin 8% patch provides significant pain relief in CIPN, and may lead to regeneration and restoration of sensory nerve fibers ie, disease modification.

5.
Front Neurol ; 8: 514, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28993756

RESUMEN

BACKGROUND: Trench foot, or non-freezing cold injury (NFCI), results from cold exposure of sufficient severity and duration above freezing point, with consequent sensory and vascular abnormalities which may persist for years. Based on observations of Trench foot in World War II, the condition was described as a vaso-neuropathy. While some reports have documented nerve damage after extreme cold exposure, sensory nerve fibres and vasculature have not been assessed with recent techniques in NFCI. OBJECTIVE: To assess patients with chronic sensory symptoms following cold exposure, in order to diagnose any underlying small fibre neuropathy, and provide insight into mechanisms of the persistent pain and cold hypersensitivity. METHODS: Thirty soldiers with cold exposure and persistent sensory symptoms (>4 months) were assessed with quantitative sensory testing, nerve conduction studies, and skin biopsies. Immunohistochemistry was used to assess intraepidermal (IENF) and subepidermal (SENF) nerve fibres with a range of markers, including the pan-neuronal marker protein gene product 9.5 (PGP 9.5), regenerating fibres with growth-associated protein 43 (GAP43), and nociceptor fibres with transient receptor potential cation channel subfamily V member 1 (TRPV1), sensory neuron-specific receptor (SNSR), and calcitonin gene-related peptide (CGRP). von Willebrand factor (vWF), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) were used for assessing blood vessels, and transient receptor potential cation channel, subfamily A member 1 (TRPA1) and P2X purinoceptor 7 (P2X7) for keratinocytes, which regulate nociceptors via release of nerve growth factor. RESULTS: Clinical examination showed pinprick sensation was abnormal in the feet of 20 patients (67%), and between 67 and 83% had abnormalities of thermal thresholds to the different modalities. 7 patients (23%) showed reduced sensory action potential amplitude of plantar nerves. 27 patients (90%) had decreased calf skin PGP 9.5 IENF (p < 0.0001), the remaining 3 patients had decreased nerve markers in subepidermis or foot skin. There were marked increases of all vascular markers (for vWF in calf skin, p < 0.0001), and increased sensory or regenerating SENF (for calf skin, GAP43, p = 0.002). TRPA1 (p = 0.0012) and P2X7 (p < 0.0001) were increased in basal keratinocytes. CONCLUSION: A range of skin biopsy markers and plantar nerve conduction studies are useful objective assessments for the diagnosis of peripheral neuropathy in NFCI. Our results suggest that an increase in blood vessels following tissue ischaemia/hypoxia could be associated with disproportionate and abnormal nerve fibres (irritable nociceptors), and may lead to NFCI as a "painful vaso-neuropathy."

6.
J Pain Res ; 10: 1623-1634, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28761369

RESUMEN

PURPOSE: The aim of this study was to measure the efficacy of a single 60 min application of capsaicin 8% patch in reducing chronic amputation stump and phantom limb pain, associated hypersensitivity with quantitative sensory testing, and changes in brain cortical maps using functional MRI (fMRI) scans. METHODS: A capsaicin 8% patch (Qutenza) treatment study was conducted on 14 patients with single limb amputation, who reported pain intensity on the Numerical Pain Rating Scale ≥4/10 for chronic stump or phantom limb pain. Pain assessments, quantitative sensory testing, and fMRI (for the lip pursing task) were performed at baseline and 4 weeks after application of capsaicin 8% patch to the amputation stump. The shift into the hand representation area of the cerebral cortex with the lip pursing task has been correlated with phantom limb pain intensity in previous studies, and was the fMRI clinical model for cortical plasticity used in this study. RESULTS: The mean reduction in spontaneous amputation stump pain, phantom limb pain, and evoked stump pain were -1.007 (p=0.028), -1.414 (p=0.018), and -2.029 (p=0.007), respectively. The areas of brush allodynia and pinprick hypersensitivity in the amputation stump showed marked decreases: -165 cm2, -80% (p=0.001) and -132 cm2, -72% (p=0.001), respectively. fMRI analyses provided objective evidence of the restoration of the brain map, that is, reversal of the shift into the hand representation of the cerebral cortex with the lip pursing task (p<0.05). CONCLUSION: The results show that capsaicin 8% patch treatment leads to significant reduction in chronic pain and, particularly, in the area of stump hypersensitivity, which may enable patients to wear prostheses, thereby improving mobility and rehabilitation. Phantom limb pain ("central" pain) and associated brain plasticity may be modulated by peripheral inputs, as they can be ameliorated by the peripherally restricted effect of the capsaicin 8% patch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...