Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12754, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38830936

RESUMEN

Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world. Biodegradability is the gift that keeps on giving, in the sense of creating an Earth worth living. The future is thus best served by green energy, sustainability, and renewable resources. To realize such goals, waste should be considered as a valuable resource. In this context, Zea mays (Zm) root fibres, which are normally considered as agricultural waste, can be used as reinforcing substances in polymer matrices to produce structural composite materials. Before being used in composites, such fibres must be analysed for their physical properties. Chemical treatments can be employed to improve the structural quality of fibres, and the changes due to such modification can be analysed. Therefore, the current work examines the effect of permanganate treatment on the surface properties of Zm fibres. The raw and potassium permanganate-treated samples were assayed for various properties. Physical analysis of the fibre samples yielded details concerning the physical aspects of the fibres. The thermal conductivity and moisture absorption behaviour of the samples were analysed. Chemical analysis was employed to characterize the composition of both treated and untreated samples. p-XRD was employed to examine the crystalline nature of the Zm fibres. Numerous functional groups present in each sample were analysed by FTIR. Thermogravimetric analysis was used to determine the thermal stability of Zm fibres. Elemental analysis (CHNS and EDS) was used to determine the elemental concentrations of both raw and treated samples. The surface alterations of Zm fibres brought on by treatment were described using SEM analysis. The characteristics of Zm roots and the changes in quality due to treatment were reviewed, and there were noticeable effects due to the treatment. Both samples would have applications in various fields, and each could be used as a potential reinforcing material in the production of efficient bio-composites.


Asunto(s)
Raíces de Plantas , Permanganato de Potasio , Zea mays , Zea mays/química , Zea mays/metabolismo , Permanganato de Potasio/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Biodegradación Ambiental , Conductividad Térmica
2.
Sci Rep ; 13(1): 20643, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001118

RESUMEN

Natural fiber is a viable and possible option when looking for a material with high specific strength and high specific modulus that is lightweight, affordable, biodegradable, recyclable, and eco-friendly to reinforce polymer composites. There are many methods in which natural fibres can be incorporated into composite materials. The purpose of this research was to evaluate the physico-chemical, structural, thermal, and mechanical properties of Acacia pennata fibres (APFs). Scanning electron microscopy was used to determine the AP fibers' diameter and surface shape. The crystallinity index (64.47%) was discovered by XRD. The irregular arrangement and rough surface are seen in SEM photos. The findings demonstrated that fiber has high levels of cellulose (55.4%), hemicellulose (13.3%), and low levels of lignin (17.75%), which were determined through chemical analysis and validated by Fourier Transform Infrared Spectroscopy (FTIR). By using FTIR, the functional groups of the isolated AP fibers were examined, and TG analysis was used to look into the thermal degrading behaviour of the fibers treated with potassium permanganate (KMnO4) Due to their low density (520 kg/m3) and high cellulose content (55.4%), they have excellent bonding qualities. Additionally, tensile tests were used for mechanical characterisation to assess their tensile strength (685 MPa) and elongation.

3.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37688148

RESUMEN

The only biotic factor that can satisfy the needs of human species are plants. In order to minimize plastic usage and spread an immediate require of environmental awareness, the globe urges for the development of green composite materials. Natural fibers show good renewability and sustainability and are hence utilized as reinforcements in polymer matrix composites. The present work concerns on the usage of Butea parviflora fiber (BP), a green material, for high end applications. The study throws light upon the characterization of raw and potassium hydroxide (KOH)-treated Butea Parviflora plant, where its physical, structural, morphological, mechanical, and thermal properties are analyzed using the powder XRD, FTIR spectroscopy, FESEM micrographs, tensile testing, Tg-DTA, Thermal conductivity, Chemical composition, and CHNS analysis. The density values of untreated and KOH-treated fibers are 1.238 g/cc and 1.340 g/cc, respectively. The crystallinity index of the treated fiber has significantly increased from 83.63% to 86.03%. The cellulose content of the treated fiber also experienced a substantial increase from 58.50% to 60.72%. Treated fibers exhibited a reduction in both hemicelluloses and wax content. Spectroscopic studies registered varying vibrations of functional groups residing on the fibers. SEM images distinguished specific changes on the raw and treated fiber surfaces. The Availability of elements Carbon, Nitrogen, and Hydrogen were analyzed using the CHNS studies. The tensile strength and modulus of treated fibers has risen to 192.97 MPa and 3.46 Gpa, respectively. Thermal conductivity (K) using Lee's disc showed a decrement in the K values of alkalized BP. The activation energy Ea lies between 55.95 and 73.15 kJ/mol. The fibers can withstand a good temperature of up to 240 °C, presenting that it can be tuned in for making sustainable composites.

4.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37177144

RESUMEN

The present study concerns the physico-chemical, structural, mechanical and thermal characterization of Acacia pennata, a natural and almost inexpensive fibre, as a potential reinforcement in polymer composites. The effect of treating the fibre with sodium acetate to increase its qualities has been seen through the use of thermogravimetric analysis, scanning electron microscope (SEM) analysis, X-ray diffraction (XRD), mechanical property tester, and Fourier transform infrared spectroscopy (FTIR). According to XRD analysis, the elimination of lignin and wax-like impurities resulted in an increase in the AP fibre's crystalline index (79.73%). The fibre's thermal stability was also discovered to be 365 °C. Tensile strength (557.58 MPa) and elongation at break both increased by 2.9% after treatment with sodium acetate. The surface nature and quality of AP fibres improved after sodium acetate treatment. It was confirmed by the reduction of chemical compositions (such as hemicellulose, lignin and pectin). Given its density, the fibre can be suggested as a reinforcement in polymer composites for light-weight applications because its lightweight property will be more useful for composite manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA