Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 108: 106954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879962

RESUMEN

In this work, we implement a dual frequency (24 kHz and 1174 kHz) ultrasonic assisted liquid phase exfoliation (ULPE) technique in deionized water (DIW) and other eco-friendly solvents, to produce a variety of high-quality few-layer graphene (FLG) solutions under controlled ultrasonication conditions. The resulting FLG dispersions of variable sizes (∼0.2-1.5 µm2) confirmed by characterisation techniques comprising UV-Vis spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM). For the first time we demonstrate that high yield of FLG flakes with minimal defects, stable for 6 + months in a solution (stability âˆ¼ 70 %), can be obtained in less than 1-hour of treatment in either water/ethanol (DIW:EtOH) or water/isopropyl alcohol (DIW:IPA) eco-friendly mixtures. We also scrutinized the underlying mechanisms of cavitation using high-speed imaging synchronized with acoustic pressure measurements. The addition of ethanol or IPA to deionized water is proposed to play a central role in exfoliation as it regulates the extend of the cavitation zone, the intensity of the ultrasonic field and, thus, the cavitation effectiveness. Our study revealed that lateral sizes of the obtained FLG depend on the choice of exfoliating media and the diameter of a sonotrode used. This variability offers flexibility in producing FLG of different sizes, applicable in a wide spectrum of size-specific applications.

2.
Ultrason Sonochem ; 94: 106328, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801674

RESUMEN

This paper follows our earlier work where a strong high frequency pressure peak has been observed as a consequence of the formation of shock waves due to the collapse of cavitation bubbles in water, excited by an ultrasonic source at 24 kHz. We study here the effects of liquid physical properties on the shock wave characteristics by replacing water as the medium successively with ethanol, glycerol and finally a 1:1 ethanol-water solution. The pressure frequency spectra obtained in our experiments (from more than 1.5 million cavitation collapsing events) show that the expected prominent shockwave pressure peak was barely detected for ethanol and glycerol, particularly at low input powers, but was consistently observed for the 1:1 ethanol-water solution as well as in water, with a slight shift in peak frequency for the solution. We also report two distinct features of shock waves in raising the frequency peak at MHz (inherent) and contributing to the raising of sub-harmonics (periodic). Empirically constructed acoustic pressure maps revealed significantly higher overall pressure amplitudes for the ethanol-water solution than for other liquids. Furthermore, a qualitative analysis revealed that mist-like patterns are developed in ethanol-water solution leading to higher pressures.

3.
Ultrason Sonochem ; 90: 106187, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36198250

RESUMEN

Graphene dispersions in water are highly desirable for a range of applications such as biomedicines, separation membranes, coatings, inkjet printing and more. Recent novel research has been focussed on developing a green approach for scalable production of graphene. However, one important parameter, which is often neglected is the bulk temperature of the processing liquid. This paper follows our earlier work where optimal sono-exfoliation parameters of graphite in aqueous solutions were determined based on the measured acoustic pressure fields at various temperatures and input powers. Here, we take the next step forward and demonstrate using systematic characterisation techniques and acoustic pressure measurements that sonication-assisted liquid phase exfoliation (LPE) of graphite powder can indeed produce high quality few layer graphene flakes in pure water at a specific temperature, i.e. 40 °C, and at an optimised input generator power of 50%, within 2-h of processing. UV-vis analysis also revealed that the exfoliation, stability and uniformity of dispersions were improved with increasing temperature. We further confirmed the successful exfoliation of graphene sheets with minimal level of defects in the optimized sample with the help of Raman microscopy and transmission electron microscopy. This study demonstrated that understanding and controlling processing temperature is one of the key parameters for graphene exfoliation in water which offers a potential pathway for its large-scale production.

4.
Ultrason Sonochem ; 80: 105820, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763212

RESUMEN

Grain refinement in alloys is a well-known effect of ultrasonic melt processing. Fragmentation of primary crystals by cavitation-induced action in liquid metals is considered as one of the main driving mechanisms for producing finer and equiaxed grain structures. However, in-situ observations of the fragmentation process are generally complex and difficult to follow in opaque liquid metals, especially for the free-floating crystals. In the present study, we develop a transparent test rig to observe in real time the fragmentation potential of free-floating primary Al3Zr particles under ultrasonic excitation in water (an established analogue medium to liquid aluminium for cavitation studies). An effective treatment domain was identified and fragmentation time determined using acoustic pressure field mapping. For the first time, real-time high-speed imaging captured the dynamic interaction of shock waves from the collapsing bubbles with floating intermetallic particles that led to their fragmentation. The breakage sequence as well as the cavitation erosion pattern were studied by means of post-treatment microscopic characterisation of the fragments. Fragment size distribution and crack patterns on the fractured surface were then analysed and quantified. Application of ultrasound is shown to rapidly (<10 s) reduce intermetallic size (from 5 mm down to 10 µm), thereby increasing the number of potential nucleation sites for the grain refinement of aluminium alloys during melt treatment.

5.
Ultrason Sonochem ; 79: 105792, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34666238

RESUMEN

Ultrasonic de-agglomeration and dispersion of oxides is important for a range of applications. In particular, in liquid metal, this is one of the ways to produce metal-matrix composites reinforced with micron and nano sized particles. The associated mechanism through which the de-agglomeration occurs has, however, only been conceptualized theoretically and not yet been validated with experimental observations. In this paper, the influence of ultrasonic cavitation on SiO2 and MgO agglomerates (commonly found in lightweight alloys as reinforcements) with individual particle sizes ranging between 0.5 and 10 µm was observed for the first time in-situ using high-speed imaging. Owing to the opacity of liquid metals, a de-agglomeration imaging experiment was carried out in de-ionised water with sequences captured at frame rates up to 50 kfps. In-situ observations were further accompanied by synchronised acoustic measurements using an advanced calibrated cavitometer, to reveal the effect of pressure amplitude arising from oscillating microbubbles on oxide de-agglomeration. Results showed that ultrasound-induced microbubble clusters pulsating chaotically, were predominantly responsible for the breakage and dispersion of oxide agglomerates. Such oscillating cavitation clusters were seen to capture the floating agglomerates resulting in their immediate disintegration. De-agglomeration of oxides occurred from both the surface and within the bulk of the aggregate. Microbubble clusters oscillating with associated emission frequencies at the subharmonic, 1st harmonic and low order ultra-harmonics of the driving frequency were deemed responsible for the breakage of the agglomerates.

6.
Ultrason Sonochem ; 76: 105647, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34182315

RESUMEN

Scaling up ultrasonic cavitation melt treatment (UST) requires effective flow management with minimised energy requirements. To this end, container dimensions leading to the resonance play a crucial role in amplifying pressure amplitude for cavitation. To quantify the importance of resonance length during the treatment of liquid aluminium, we used calibrated high-temperature cavitometers (in the range of 8-400 kHz), to measure and record the acoustic pressure profiles inside the cavitation-induced environment of liquid Al and deionized water (used as an analogue to Al) excited at 19.5 kHz. To achieve a comprehensive map of the acoustic pressure field, measurements were conducted at three different cavitometer positions relative to the vibrating sonotrode probe and for a number of resonant and non-resonant container lengths based on the speed of sound in the treated medium. The results showed that the resonance length affected the pressure magnitude in liquid Al in all cavitometer positions, while water showed no sensitivity to resonance length. An important practical application of UST in aluminium processing concerns grain refinement. For this reason, grain size analysis of UST-treated Al-Cu-Zr-Ti alloy was used as an indicator of the melt treatment efficiency. The result showed that the treatment in a resonance tank of L=λAl (the wavelength of sound in Al) gave the best structure refinement as compared to other tested lengths. The data given here contribute to the optimisation of the ultrasonic process in continuous casting, by providing an optimum value for the critical compartment (e.g. in a launder of direct-chill casting) dimension.

7.
Ultrason Sonochem ; 70: 105260, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32818723

RESUMEN

One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20-40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.

8.
Materials (Basel) ; 12(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438479

RESUMEN

Developing advanced thin film materials is the key challenge in high-temperature applications of surface acoustic wave sensor devices. One hundred nanometer thick (Mo-La 2 O 3 ) multilayer systems were fabricated at room temperature on thermally oxidized (100) Si substrates (SiO 2 /Si) to study the effect of lanthanum oxide on the electrical resistivity of molybdenum thin films and their high-temperature stability. The multilayer systems were deposited by the magnetron sputter deposition of extremely thin (≤1 nm) La interlayers in between adjacent Mo layers. After deposition of each La layer the process was interrupted for 25 to 60 min to oxidize the La using the residual oxygen in the high vacuum of the deposition chamber. The samples were annealed at 800 ∘ C in high vacuum for up to 120 h. In case of a 1 nm thick La interlayer in-between the Mo a continuous layer of La 2 O 3 is formed. For thinner La layers an interlayer between adjacent Mo layers is observed consisting of a (La 2 O 3 -Mo) mixed structure of molybdenum and nm-sized lanthanum oxide particles. Measurements show that the (Mo-La 2 O 3 ) multilayer systems on SiO 2 /Si substrates are stable at least up to 800 ∘ C for 120 h in high vacuum conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA