Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 184: 59-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555158

RESUMEN

Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid origin and immature state, whose hallmark is the capacity to suppress T cells and other immune populations. In mice, the first approach to identify MDSCs relies in the measurement of their phenotypical markers: CD11b and GR-1. In addition, two main subtypes of MDSCs have been defined based on the expression of the following markers: CD11b+ Ly6G- Ly6C+ (monocytic-MDSCs, M-MDSCs) and CD11b+ Ly6G+ Ly6C+/low (polymorphonuclear-MDSCs, PMN-MDSCs). Since CD11b+ GR-1+ (Ly6C+/Ly6G+) MDSCs can increase significantly in peripheral blood during numerous acute or chronic processes, measuring alterations in the phenotypic markers CD11b and GR-1 could be important as a first step before assessing the suppressive function of the cells. In many cases it could be necessary to measure CD11b+ Gr-1+ cells from a minimum volume of peripheral blood cells without greatly affecting animal viability, since this approach would allow for further studies to be conducted on subsequent days, such as measuring parameters of the immune response or even survival in the context of the pathology under study. The following protocol describes a simple and optimized protocol for measuring the presence of CD11b+ GR-1+ (Ly6C+/Ly6G+) myeloid cells using 2+ channel flow cytometry, from a minimum volume of mouse peripheral blood obtained by facial vein puncture.


Asunto(s)
Monocitos , Células Mieloides , Ratones , Animales , Células Mieloides/metabolismo , Linfocitos T , Citometría de Flujo , Ratones Endogámicos C57BL
2.
Int Rev Cell Mol Biol ; 375: 117-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967151

RESUMEN

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Células Supresoras de Origen Mieloide , Trypanosoma cruzi , Animales , Ratones , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/prevención & control , Sistema Inmunológico , Linfocitos T Reguladores
3.
Acta Trop ; 241: 106889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893830

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Administración Intranasal , Inmunidad Mucosa , Ganglios Linfáticos , Enfermedad de Chagas/prevención & control , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Inmunoglobulina G , Ratones Endogámicos BALB C
4.
Front Cell Infect Microbiol ; 12: 1003781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250061

RESUMEN

It is widely accepted that the immune system includes molecular and cellular components that play a role in regulating and suppressing the effector immune response in almost any process in which the immune system is involved. Myeloid-derived suppressor cells (MDSCs) are described as a heterogeneous population of myeloid origin, immature state, with a strong capacity to suppress T cells and other immune populations. Although the initial characterization of these cells was strongly associated with pathological conditions such as cancer and then with chronic and acute infections, extensive evidence supports that MDSCs are also involved in physiological/non-pathological settings, including pregnancy, neonatal period, aging, and vaccination. Vaccination is one of the greatest public health achievements and has reduced mortality and morbidity caused by many pathogens. The primary goal of prophylactic vaccination is to induce protection against a potential pathogen by mimicking, at least in a part, the events that take place during its natural interaction with the host. This strategy allows the immune system to prepare humoral and cellular effector components to cope with the real infection. This approach has been successful in developing vaccines against many pathogens. However, when the infectious agents can evade and subvert the host immune system, inducing cells with regulatory/suppressive capacity, the development of vaccines may not be straightforward. Notably, there is a long list of complex pathogens that can expand MDSCs, for which a vaccine is still not available. Moreover, vaccination against numerous bacteria, viruses, parasites, and fungi has also been shown to cause MDSC expansion. Increases are not due to a particular adjuvant or immunization route; indeed, numerous adjuvants and immunization routes have been reported to cause an accumulation of this immunosuppressive population. Most of the reports describe that, according to their suppressive nature, MDSCs may limit vaccine efficacy. Taking into account the accumulated evidence supporting the involvement of MDSCs in vaccination, this review aims to compile the studies that highlight the role of MDSCs during the assessment of vaccines against pathogens.


Asunto(s)
Células Supresoras de Origen Mieloide , Inmunidad , Inmunización , Linfocitos T , Vacunación
5.
Acta Trop ; 229: 106334, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35101415

RESUMEN

The difficulties encountered in achieving treatments for chronic Chagas disease have promoted the investigation of new therapeutic strategies. In this study, we used two murine models of Trypanosoma cruzi chronic infection to determine the usefulness of applying a therapeutic vaccine alone or followed by benznidazole (Bz) chemotherapy. A vaccine formulation based on an N-terminal fragment of Trans-sialidase (TS) and Immunostimulant Particle Adjuvant (ISPA) - TSNt-ISPA was obtained. Firstly, the immunogenicity and protective capacity of TSNt-ISPA was demonstrated as a prophylactic formulation in an acute model of infection. Later, the formulation was assessed as a therapeutic vaccine alone or combined with (Bz) using two models of chronic infection. BALB/c mice chronically infected with Sylvio X10/4 or Tulahuen cl2 T. cruzi strains were not treated as control or treated only with the therapeutic vaccine TSNt-ISPA, with a combined treatment TSNt-ISPA+Bz (Bz applied after the vaccine), or only with Bz. The vaccination schedule consisted of TSNt-ISPA administration at days110, 120, and 130 post-infection (pi) and Bz administration was performed daily from day 140 to 170 pi. At day 273 pi, electrocardiographic (ECG) parameters, heart parasite load, myocarditis, and heart fibrosis were assessed. In both models, therapeutic administration of TSNt-ISPA reduced ECG alterations and the cardiac tissue damage observed in the chronic phase. Moreover, vaccine treatment significantly decreased heart parasite load in both Sylvio X10/4 and Tulahuen cl2 infected mice. The combined treatment, but not Bz or vaccine administration alone, allowed to restore ECG parameters in Tulahuen cl2 infected mice. The results indicate the usefulness of the therapeutic TSNt-ISPA formulation in BALB/c mice chronically infected with Sylvio X10/4 or Tulahuen cl2 strain. For the mice infected with T. cruzi Tulahuen cl2 strain, the combined treatment with the vaccine and Bz had a more positive effect on the course of heart disease than the individual treatments with the vaccine or Bz alone.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Vacunas , Animales , Enfermedad de Chagas/parasitología , Ratones , Nitroimidazoles/uso terapéutico , Infección Persistente , Tripanocidas/uso terapéutico , Vacunas/uso terapéutico
6.
Front Cell Infect Microbiol ; 11: 671104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295832

RESUMEN

Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.


Asunto(s)
Enfermedad de Chagas , Células Supresoras de Origen Mieloide , Vacunas Antiprotozoos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/prevención & control , Glicoproteínas , Ratones , Neuraminidasa
7.
Trans R Soc Trop Med Hyg ; 115(9): 1054-1060, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-33503657

RESUMEN

BACKGROUND: It has been described that Trypanosoma cruzi is capable of promoting metabolic disturbances currently considered as cardiovascular risk factors. Moreover, it has been observed that the protozoa can remain in adipose tissue and alter its immune endocrine functions. The aim of this study was to characterize the thickness of epicardial adipose tissue (EAT) in patients with chronic Chagas disease (CCD) concerning their cardiovascular metabolic risk profile compared with those without CCD. METHODS: A cross-sectional study was performed including T. cruzi seropositive individuals categorized according to a standard CCD classification and a matched seronegative control group. Complete clinical examination, metabolic laboratory tests and transthoracic echocardiography to assess cardiac function and to quantify EAT were performed. RESULTS: Fifty-five individuals aged 46.7±11.9 y, 34 with CCD and 21 in the control group, were included. The CCD group presented higher EAT thickness in relation to controls (4.54±1.28 vs 3.22±0.99 mm; p=0.001), which was significantly associated with the presence of insulin resistance (OR=3, 95% CI 1.58 to 5.73; p<0.001). This group presented lower levels of plasmatic adiponectin than controls, especially in those patients with EAT ≥4.5 mm (p=0.005) who also presented with heart failure more frequently (p=0.01). CONCLUSION: In patients with CCD, a higher EAT thickness is observed and is associated with an increased metabolic risk profile indicated mainly by insulin resistance.


Asunto(s)
Enfermedad de Chagas , Insuficiencia Cardíaca , Tejido Adiposo/diagnóstico por imagen , Enfermedad de Chagas/complicaciones , Estudios Transversales , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Humanos , Pericardio/diagnóstico por imagen
8.
Front Microbiol ; 9: 2100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258417

RESUMEN

Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.

9.
Oncotarget ; 8(35): 58003-58020, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938533

RESUMEN

Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested.

10.
Immunotherapy ; 9(7): 555-565, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28595515

RESUMEN

AIM: The development of vaccines against Trypanosoma cruzi remains in an exploratory stage. Despite several antigen candidates have been evaluated, a comparison among the performance of the immunogens cannot be carried out because the available reports differ in formulations and infection model. In this work, we compared the protective capacity of seven T. cruzi antigens in the same model of five new antigens and two well-established candidates. Materials & methods: We evaluated highly immunogenic proteins that contain tandem repeats (FRA [flagelar repetitive protein], Tc3, Tc6); enzymes involved in metabolic pathways critical for parasite survival (cytosolic tryparedoxin peroxidase and tryparedoxin peroxidase); and enzymes involved in parasite invasion (trans-sialidase [TS] and cruzipain). All these antigens were formulated with Freund's adjuvant and protection against the parasite infection was assessed in BALB/c mice. RESULTS: Tc3, cytosolic tryparedoxin peroxidase, cruzipain and TS showed the best outcome after infection in survival level and parasitemia. According to these data, these groups were also assessed using the ISCOMATRIX™ adjuvant which is being used in clinical trials. CONCLUSION: Taken together, our results showed that the TS overcomes the performance of other antigens when the same model is employed, confirming that TS is a promising antigen that could be used as a vaccine against T. cruzi.


Asunto(s)
Enfermedad de Chagas/inmunología , Glicoproteínas/inmunología , Neuraminidasa/inmunología , Peroxidasas/inmunología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Trypanosoma cruzi/inmunología , Animales , Cisteína Endopeptidasas/inmunología , Femenino , Adyuvante de Freund , Humanos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Vacunación
11.
Pathog Dis ; 74(9)2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27815312

RESUMEN

Since the immune response mounted by the host to a particular microorganism might be influenced by the acquired immunological experience due to previous contact with other microorganisms, we performed a cross-sectional study to explore the pattern of Trypanosoma cruzi infection-related antibodies in T. cruzi-seropositive individuals presenting concomitant tuberculosis, or the antecedent of BCG vaccination. Sampled individuals were grouped as follows: patients with Chagas disease, not vaccinated with BCG, who further developed pulmonary tuberculosis; individuals with Chagas disease, BCG-vaccinated; and subjects with Chagas disease, presenting neither BCG scar nor tuberculosis disease. Non-vaccinated individuals or without tuberculosis, presented the highest values of anti-PH (P < 0.001), anti-FRA (P < 0.001), anti-p2ß (P = 0.0023) and anti-B13 (P < 0.001) antibodies. The present findings constitute the first demonstration of the potential influence of concomitant tuberculosis on Chagas disease.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Enfermedad de Chagas/inmunología , Coinfección , Infecciones por Mycobacterium/inmunología , Mycobacterium/inmunología , Trypanosoma cruzi/inmunología , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/microbiología , Enfermedad de Chagas/parasitología , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Infecciones por Mycobacterium/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...