Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Hear ; 27: 23312165231168741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37083055

RESUMEN

Bone conduction (BC) stimulation has mainly been used for clinical hearing assessment and hearing aids where stimulation is applied at the mastoid behind the ear. Recently, BC has become popular for communication headsets where the stimulation position often is close to the anterior part of the ear canal opening. The BC sound transmission for this stimulation position is here investigated in 21 participants by ear canal sound pressure measurements and hearing threshold assessment as well as simulations in the LiUHead. The results indicated that a stimulation position close to the ear canal opening improves the sensitivity for BC sound by around 20 dB but by up to 40 dB at some frequencies. The transcranial transmission ranges typically between -40 and -25 dB. This decreased transcranial transmission facilitates saliency of binaural cues and implies that BC headsets are suitable for virtual and augmented reality applications. The findings suggest that with BC stimulation close to the ear canal opening, the sound pressure in the ear canal dominates the perception of BC sound. With this stimulation, the ear canal pathway was estimated to be around 25 dB greater than other contributors, like skull bone vibrations, for hearing BC sound in a healthy ear. This increased contribution from the ear canal sound pressure to BC hearing means that a position close to the ear canal is not appropriate for clinical use since, in such case, a conductive hearing loss affects BC and air conduction thresholds by a similar amount.


Asunto(s)
Conducción Ósea , Audición , Humanos , Conducción Ósea/fisiología , Estimulación Acústica , Umbral Auditivo/fisiología , Sonido
2.
Hear Res ; 418: 108471, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255284

RESUMEN

Soft tissue conduction has been proposed as an alternative to bone conduction (BC) for hearing vibrations applied at soft tissue positions at the human head. Arguments for soft tissue conduction originate primarily from experimental studies with stimulation applied to different positions such as the neck, the eye, and directly to the dura. To investigate the mechanism for hearing when stimulations are at soft tissue positions, experimental studies were replicated using the finite element model for BC research, the LiUHead. The vibrations at the cochlear promontory and the sound pressure in the cerebrospinal fluid (CSF) close to the inner ear were extracted from simulations in the LiUHead. The LiUHead simulations were able to replicate data in the literature of cochlear promontory vibration levels and CSF sound pressures with stimulation applied at the soft tissue positions and at the skin covered mastoid. It was shown that the mechanical point impedance of the soft tissue positions affected the output of the BC transducer at frequencies below 1 kHz. The LiUHead simulated cochlear promontory velocities predicted the soft tissue position's hearing thresholds reported in the literature within the inter-study range. This indicates that the hearing mechanism for stimulation at soft tissue positions equals the hearing mechanism for conventional BC hearing, and that soft tissue conduction is not an alternative hearing mechanism. Moreover, the simulations indicated that the CSF sound pressure is not an important pathway for BC hearing and that the CSF pressure is generated by the local skull bone vibrations.


Asunto(s)
Conducción Ósea , Vibración , Estimulación Acústica , Umbral Auditivo/fisiología , Conducción Ósea/fisiología , Humanos , Cráneo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA