Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Extremophiles ; 28(1): 9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190047

RESUMEN

Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.


Asunto(s)
Thermoanaerobacterium , Xilosa , Thermoanaerobacterium/genética , Genómica , Firmicutes , Biocombustibles
2.
Diabetes ; 71(7): 1546-1561, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35377454

RESUMEN

Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.


Asunto(s)
Resistencia a la Insulina , Leptina , Tejido Adiposo/metabolismo , Animales , Inflamación/metabolismo , Leptina/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
4.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697943

RESUMEN

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Glucemia/metabolismo , Infecciones por Coronavirus/complicaciones , Complicaciones de la Diabetes/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Monocitos/metabolismo , Neumonía Viral/complicaciones , Adulto , COVID-19 , Línea Celular , Infecciones por Coronavirus/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Femenino , Glucólisis , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/virología , Pandemias , Neumonía Viral/metabolismo , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...