Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 105(3-1): 034107, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428090

RESUMEN

We find the relation between reliability and entropy production in a realistic model of electronic memory (low-power metal-oxide-semiconductor-based SRAM) where logical values are encoded as metastable nonequilibrium states. We employ large deviation techniques to obtain an analytical expression for the bistable quasipotential describing the nonequilibrium steady state and use it to derive an explicit expression bounding the error rate of the memory. Our results go beyond the dominant contribution given by classical instanton theory and provide accurate estimates of the error rate as confirmed by comparison with stochastic simulations.

2.
Phys Rev E ; 105(2-1): 024106, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291114

RESUMEN

We introduce an alternative route for obtaining reliable cyclic engines, based on two interacting Brownian particles under time-periodic drivings which can be used as a work-to-work converter or a heat engine. Exact expressions for the thermodynamic fluxes, such as power and heat, are obtained using the framework of stochastic thermodynamic. We then use these exact expression to optimize the driving protocols with respect to output forces, their phase difference. For the work-to-work engine, they are solely expressed in terms of Onsager coefficients and their derivatives, whereas nonlinear effects start to play a role since the particles are at different temperatures. Our results suggest that stronger coupling generally leads to better performance, but careful design is needed to optimize the external forces.

3.
Phys Rev E ; 104(3): L032105, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654171

RESUMEN

In a recent Letter [A. Lapolla and A. Godec, Phys. Rev. Lett. 125, 110602 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.110602], thermal relaxation was observed to occur faster from cold to hot (heating) than from hot to cold (cooling). Here we show that overdamped diffusion in anharmonic potentials generically exhibits both faster heating and faster cooling, depending on the initial temperatures and on the potential's degree of anharmonicity. We draw a relaxation-speed phase diagram that localizes the different behaviors in parameter space. In addition to faster-heating and faster-cooling regions, we identify a crossover region in the phase diagram, where heating is initially slower but asymptotically faster than cooling. The structure of the phase diagram is robust against the inclusion of a confining, harmonic term in the potential as well as moderate changes of the measure used to define initially equidistant temperatures.

4.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34157308

RESUMEN

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Asunto(s)
Replicación del ADN/genética , Células Eucariotas/fisiología , Genoma Humano/genética , Línea Celular Tumoral , Cromatina/genética , Momento de Replicación del ADN/genética , Genoma Fúngico/genética , Estudio de Asociación del Genoma Completo/métodos , Células HeLa , Humanos , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción/fisiología
5.
Phys Rev E ; 102(3-1): 032105, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075986

RESUMEN

We study the finite-time erasure of a one-bit memory consisting of a one-dimensional double-well potential, with each well encoding a memory macrostate. We focus on setups that provide full control over the form of the potential-energy landscape and derive protocols that minimize the average work needed to erase the bit over a fixed amount of time. We allow for cases where only some of the information encoded in the bit is erased. For systems required to end up in a local-equilibrium state, we calculate the minimum amount of work needed to erase a bit explicitly, in terms of the equilibrium Boltzmann distribution corresponding to the system's initial potential. The minimum work is inversely proportional to the duration of the protocol. The erasure cost may be further reduced by relaxing the requirement for a local-equilibrium final state and allowing for any final distribution compatible with constraints on the probability to be in each memory macrostate. We also derive upper and lower bounds on the erasure cost.

6.
Phys Rev Lett ; 125(10): 100602, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955336

RESUMEN

We study the thermodynamic cost associated with the erasure of one bit of information over a finite amount of time. We present a general framework for minimizing the average work required when full control of a system's microstates is possible. In addition to exact numerical results, we find simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The average work associated with the optimal protocol can be up to a factor of 4 smaller relative to protocols constrained to end in local equilibrium. Assessing prior experimental and numerical results based on heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.

7.
Phys Rev E ; 100(2-1): 022141, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31574599

RESUMEN

We derive a linear thermodynamics theory for general Markov dynamics with both steady-state and time-periodic drivings. Expressions for thermodynamic quantities, such as chemical work, heat, and entropy production are obtained in terms of equilibrium probability distribution and the drivings. The entropy production is derived as a bilinear function of thermodynamic forces and the associated fluxes. We derive explicit formulae for the Onsager coefficients and use them to verify the Onsager-Casimir reciprocal relations. Our results are illustrated on a periodically driven quantum dot in contact with two electron reservoirs and optimization protocols are discussed.

8.
J Chem Phys ; 151(12): 124109, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575196

RESUMEN

We report a numerical study of thermo-osmotic slip, i.e., the particle flux induced by a thermal gradient along a solid-fluid interface. To facilitate comparison with theory, we consider a model of an ideal but viscous gas. We compare three numerical routes to obtain the slip coefficient: (1) by using the Onsager reciprocity relations, (2) by using the appropriate Green-Kubo relation, and (3) via the excess enthalpy. The numerical results are found to be mutually consistent and to agree with the theoretical prediction based on the assumption that hydrodynamics and thermodynamics are locally valid.

9.
Chaos ; 27(10): 104601, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092424

RESUMEN

Building on our earlier work [Proesmans et al., Phys. Rev. X 6, 041010 (2016)], we introduce the underdamped Brownian duet as a prototype model of a dissipative system or of a work-to-work engine. Several recent advances from the theory of stochastic thermodynamics are illustrated with explicit analytic calculations and corresponding Langevin simulations. In particular, we discuss the Onsager-Casimir symmetry, the trade-off relations between power, efficiency and dissipation, and stochastic efficiency.

10.
Phys Rev Lett ; 119(14): 147803, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29053287

RESUMEN

Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

11.
Phys Rev Lett ; 116(22): 220601, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27314707

RESUMEN

We derive general relations between the maximum power, maximum efficiency, and minimum dissipation regimes from linear irreversible thermodynamics. The relations simplify further in the presence of a particular symmetry of the Onsager matrix, which can be derived from detailed balance. The results are illustrated on a periodically driven system and a three-terminal device subject to an external magnetic field.

12.
Artículo en Inglés | MEDLINE | ID: mdl-26465424

RESUMEN

We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

13.
Phys Rev Lett ; 115(9): 090601, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371634

RESUMEN

We evaluate the Onsager matrix for a system under time-periodic driving by considering all its Fourier components. By application of the second law, we prove that all the fluxes converge to zero in the limit of zero dissipation. Reversible efficiency can never be reached at finite power. The implication for an Onsager matrix, describing reduced fluxes, is that its determinant has to vanish. In the particular case of only two fluxes, the corresponding Onsager matrix becomes symmetric.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...