Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38011998

RESUMEN

2-Hydroxyglutarate (2-HG) is an oncometabolite that accumulates in certain cancers. Gain-of-function mutations in isocitrate dehydrogenase lead to 2-HG accumulation at the expense of alpha-ketoglutarate. Elevated 2-HG levels inhibit histone and DNA demethylases, causing chromatin structure and gene regulation changes with tumorigenic consequences. We investigated the effects of elevated 2-HG levels in Saccharomyces cerevisiae, a yeast devoid of DNA methylation and heterochromatin-associated histone methylation. Our results demonstrate genetic background-dependent gene expression changes and altered H3K4 and H3K36 methylation at specific loci. Analysis of histone demethylase deletion strains indicated that 2-HG inhibits Rph1 sufficiently to induce extensive gene expression changes. Rph1 is the yeast homolog of human KDM4 demethylases and, among the yeast histone demethylases, was the most sensitive to the inhibitory effect of 2-HG in vitro. Interestingly, Rph1 deficiency favors gene repression and leads to further down-regulation of already silenced genes marked by low H3K4 and H3K36 trimethylation, but abundant in H3K36 dimethylation. Our results provide novel insights into the genome-wide effects of 2-HG and highlight Rph1 as its preferential demethylase target.


Asunto(s)
Histona Demetilasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Front Oncol ; 13: 1164535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188201

RESUMEN

Heterogeneity describes the differences among cancer cells within and between tumors. It refers to cancer cells describing variations in morphology, transcriptional profiles, metabolism, and metastatic potential. More recently, the field has included the characterization of the tumor immune microenvironment and the depiction of the dynamics underlying the cellular interactions promoting the tumor ecosystem evolution. Heterogeneity has been found in most tumors representing one of the most challenging behaviors in cancer ecosystems. As one of the critical factors impairing the long-term efficacy of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive metastasizing, and recurrence. We review the role of the main models and the emerging single-cell and spatial genomic technologies in our understanding of tumor heterogeneity, its contribution to lethal cancer outcomes, and the physiological challenges to consider in designing cancer therapies. We highlight how tumor cells dynamically evolve because of the interactions within the tumor immune microenvironment and how to leverage this to unleash immune recognition through immunotherapy. A multidisciplinary approach grounded in novel bioinformatic and computational tools will allow reaching the integrated, multilayered knowledge of tumor heterogeneity required to implement personalized, more efficient therapies urgently required for cancer patients.

3.
EMBO J ; 42(4): e112275, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36350249

RESUMEN

Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Esfingolípidos , Humanos , Esfingolípidos/metabolismo , Ubiquitina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Homeostasis
4.
Mol Cancer Ther ; 21(4): 616-624, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086958

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) ranks sixth in cancer incidence worldwide and has a 5-year survival rate of only 63%. Immunotherapies-principally immune checkpoint inhibitors (ICI), such as anti-PD-1 and anti-CTLA-4 antibodies that restore endogenous antitumor T-cell immunity-offer the greatest promise for HNSCC treatment. Anti-PD-1 has been recently approved for first-line treatment of recurrent and metastatic HNSCC; however, less than 20% of patients show clinical benefit and durable responses. In addition, the clinical application of ICI has been limited by immune-related adverse events (irAE) consequent to compromised peripheral immune tolerance. Although irAEs are often reversible, they can become severe, prompting premature therapy termination or becoming life threatening. To address the irAEs inherent to systemic ICI therapy, we developed a novel, local delivery strategy based upon an array of soluble microneedles (MN). Using our recently reported syngeneic, tobacco-signature murine HNSCC model, we found that both systemic and local-MN anti-CTLA-4 therapy lead to >90% tumor response, which is dependent on CD8 T cells and conventional dendritic cell type 1 (cDC1). However, local-MN delivery limited the distribution of anti-CTLA-4 antibody from areas distal to draining lymphatic basins. Employing Foxp3-GFPDTR transgenic mice to interrogate irAEs in vivo, we found that local-MN delivery of anti-CTLA-4 protects animals from irAEs observed with systemic therapy. Taken together, our findings support the exploration of MN-intratumoral ICI delivery as a viable strategy for HNSCC treatment with reduced irAEs, and the opportunity to target cDC1s as part of multimodal treatment options to boost ICI therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/etiología , Humanos , Inmunoterapia/efectos adversos , Ratones , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
5.
Biomaterials ; 276: 120975, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34333365

RESUMEN

BACKGROUND: Understanding the molecular mechanisms of metastatic dissemination, the leading cause of death in cancer patients, is required to develop novel, effective therapies. Extravasation, an essential rate-limiting process in the metastatic cascade, includes three tightly coordinated steps: cancer cell adhesion to the endothelium, trans-endothelial migration, and early invasion into the secondary site. Focal adhesion proteins, including Tln1 and FAK, regulate the cytoskeleton dynamics: dysregulation of these proteins is often associated with metastatic progression and poor prognosis. METHODS: Here, we studied the previously unexplored role of these targets in each extravasation step using engineered 3D in vitro models, which recapitulate the physiological vascular niche experienced by cancer cells during hematogenous metastasis. RESULTS: Human breast cancer and fibrosarcoma cell lines respond to Cdk5/Tln1/FAK axis perturbation, impairing their metastatic potential. Vascular breaching requires actin polymerization-dependent invadopodia formation. Invadopodia generation requires the structural function of FAK and Tln1 rather than their activation through phosphorylation. Our data support that the inhibition of FAKS732 phosphorylation delocalizes ERK from the nucleus, decreasing ERK phosphorylated form. These findings indicate the critical role of these proteins in driving trans-endothelial migration. In fact, both knock-down experiments and chemical inhibition of FAK dramatically reduces lung colonization in vivo and TEM in microfluidic setting. Altogether, these data indicate that engineered 3D in vitro models coupled to in vivo models, genetic, biochemical, and imaging tools represent a powerful weapon to increase our understanding of metastatic progression. CONCLUSIONS: These findings point to the need for further analyses of previously overlooked phosphorylation sites of FAK, such as the serine 732, and foster the development of new effective antimetastatic treatments targeting late events of the metastatic cascade.


Asunto(s)
Microfluídica , Neoplasias , Movimiento Celular , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilación , Talina/metabolismo
6.
Mol Cancer Ther ; 19(9): 1784-1796, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32727882

RESUMEN

Tipifarnib is a potent and highly selective inhibitor of farnesyltransferase (FTase). FTase catalyzes the posttranslational attachment of farnesyl groups to signaling proteins that are required for localization to cell membranes. Although all RAS isoforms are FTase substrates, only HRAS is exclusively dependent upon farnesylation, raising the possibility that HRAS-mutant tumors might be susceptible to tipifarnib-mediated inhibition of FTase. Here, we report the characterization of tipifarnib activity in a wide panel of HRAS-mutant and wild-type head and neck squamous cell carcinoma (HNSCC) xenograft models. Tipifarnib treatment displaced both mutant and wild-type HRAS from membranes but only inhibited proliferation, survival, and spheroid formation of HRAS-mutant cells. In vivo, tipifarnib treatment induced tumor stasis or regression in all six HRAS-mutant xenografts tested but displayed no activity in six HRAS wild-type patient-derived xenograft (PDX) models. Mechanistically, drug treatment resulted in the reduction of MAPK pathway signaling, inhibition of proliferation, induction of apoptosis, and robust abrogation of neovascularization, apparently via effects on both tumor cells and endothelial cells. Bioinformatics and quantitative image analysis further revealed that FTase inhibition induces progressive squamous cell differentiation in tipifarnib-treated HNSCC PDXs. These preclinical findings support that HRAS represents a druggable oncogene in HNSCC through FTase inhibition by tipifarnib, thereby identifying a precision therapeutic option for HNSCCs harboring HRAS mutations.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinolonas/administración & dosificación , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Transferasas Alquil y Aril/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Medicina de Precisión , Prenilación/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinolonas/farmacología , Análisis de Secuencia de ARN , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
7.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530632

RESUMEN

Peroxisomes are conserved organelles of eukaryotic cells with important roles in cellular metabolism, human health, redox homeostasis, as well as intracellular metabolite transfer and signaling. We review here the current status of the different co-existing modes of biogenesis of peroxisomal membrane proteins demonstrating the fascinating adaptability in their targeting and sorting pathways. While earlier studies focused on peroxisomes as autonomous organelles, the necessity of the ER and potentially even mitochondria as sources of peroxisomal membrane proteins and lipids has come to light in recent years. Additionally, the intimate physical juxtaposition of peroxisomes with other organelles has transitioned from being viewed as random encounters to a growing appreciation of the expanding roles of such inter-organellar membrane contact sites in metabolic and regulatory functions. Peroxisomal quality control mechanisms have also come of age with a variety of mechanisms operating both during biogenesis and in the cellular response to environmental cues.


Asunto(s)
Retículo Endoplásmico/genética , Proteínas de la Membrana/biosíntesis , Mitocondrias/genética , Peroxisomas/genética , Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Redes y Vías Metabólicas/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Peroxisomas/metabolismo
8.
J Mol Biol ; 429(23): 3743-3762, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29037759

RESUMEN

Peroxisomal membrane proteins (PMPs) traffic to peroxisomes by two mechanisms: direct insertion from the cytosol into the peroxisomal membrane and indirect trafficking to peroxisomes via the endoplasmic reticulum (ER). In mammals and yeast, several PMPs traffic via the ER in a Pex3- and Pex19-dependent manner. In Komagataella phaffii (formerly called Pichia pastoris) specifically, the indirect traffic of Pex2, but not of Pex11 or Pex17, depends on Pex3, but all PMPs tested for indirect trafficking require Pex19. In mammals, the indirect traffic of PMPs also requires PEX16, a protein that is absent in most yeast species. In this study, we isolated PEX36, a new gene in K. phaffii, which encodes a PMP. Pex36 is required for cell growth in conditions that require peroxisomes for the metabolism of certain carbon sources. This growth defect in cells lacking Pex36 can be rescued by the expression of human PEX16, Saccharomyces cerevisiae Pex34, or by overexpression of the endogenous K. phaffii Pex25. Pex36 is not an essential protein for peroxisome proliferation, but in the absence of the functionally redundant protein, Pex25, it becomes essential and less than 20% of these cells show import-incompetent, peroxisome-like structures (peroxisome remnants). In the absence of both proteins, peroxisome biogenesis and the intra-ER sorting of Pex2 and Pex11C are seriously impaired, likely by affecting Pex3 and Pex19 function.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Peroxinas/metabolismo , Peroxisomas/metabolismo , Pichia/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas de la Membrana/genética , Peroxinas/genética , Pichia/crecimiento & desarrollo , Transporte de Proteínas
9.
Fungal Biol ; 121(3): 253-263, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28215352

RESUMEN

Light is perceived and transduced by fungi, where it modulates processes as diverse as growth and morphogenesis, sexual development and secondary metabolism. A special case in point is that of fungi with a subterranean, light-shielded habitat such as Tuber spp. Using as reference the genome sequence of the black truffle Tuber melanosporum, we used bioinformatic prediction tools and expression data to gain insight on the photoreceptor systems of this hypogeous ectomycorrhizal fungus. These include a chromophore-less opsin, a putative red-light-sensing phytochrome not expressed at detectable levels in any of the examined lifecycle stages, and a nearly canonical two-component (WC-1/WC-2) photoreceptor system similar to the Neurospora white collar complex (WCC). Multiple evidence, including expression at relatively high levels in all lifecycle stages except for fruiting-bodies and the results of heterologous functional complementation experiments conducted in Neurospora, suggests that the Tuber WCC is likely functional and capable of responding to blue-light. The other putative T. melanosporum photoreceptor components, especially the chromophore-less opsin and the likely non-functional phytochrome, may instead represent signatures of adaptation to a hypogeous (light-shielded) lifestyle.


Asunto(s)
Ascomicetos/genética , Genoma Fúngico , Fotorreceptores Microbianos/genética , Biología Computacional
10.
Int J Mol Sci ; 16(7): 15347-83, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26198228

RESUMEN

Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.


Asunto(s)
Relojes Circadianos/genética , Fototransducción/genética , Neurospora crassa/genética , Procesamiento Proteico-Postraduccional/genética , Cromatina/metabolismo , Relojes Circadianos/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Fototransducción/efectos de la radiación , Neurospora crassa/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación
11.
AMB Express ; 4: 43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949275

RESUMEN

Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites.

12.
PLoS One ; 9(1): e86002, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489688

RESUMEN

BACKGROUND: Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes. METHODOLOGY/PRINCIPAL FINDINGS: In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity. CONCLUSIONS/SIGNIFICANCE: Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Histonas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Coenzimas/metabolismo , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...