Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 18(1): 2219936, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37288992

RESUMEN

In this study, the effects of foliar applied methyl jasmonate (MeJA) on drought-stressed Impatiens walleriana growth and leaf physiology parameters: stomatal conductance, chlorophyll, flavonoid, anthocyanin, and nitrogen balance index (NBI), were evaluated. These parameters could serve as indicators of drought tolerance of I. walleriana, a popular horticultural plant worldwide that is very sensitive to drought. The experiment included four treatments: control, drought-stressed plants sprayed with distilled water, drought-stressed plants sprayed with 5 µM MeJA, and drought-stressed plants sprayed with 50 µM MeJA. Foliar spraying with MeJA was performed twice: seven days before and on the day of drought induction. The stressed plant groups were non-irrigated to achieve soil water contents (SWC) of 15 and 5%, while control plants were well-watered throughout the experiment (35-37% SWC). The results of this study showed that drought significantly reduced I. walleriana fresh and dry shoot weight, as well as total leaf area, but did not impact on dry matter content. The foliar application of MeJA improved growth parameters of I. walleriana, depending on the elicitor concentration and drought intensity. Stomatal conductance was slightly reduced at 5% SWC, and foliar applied MeJA at both concentrations. The flavonoid index was slightly reduced at 15 and 5% SWC when 50 µM MeJA was foliar applied, while there were no observed changes in the anthocyanin index in any treatments. The foliar application of 50 µM MeJA increased the chlorophyll index and NBI of I. walleriana at 5% SWC, indicating a contribution of the elicitor to plant drought tolerance at the physiological level.


Asunto(s)
Impatiens , Sequías , Antocianinas , Hojas de la Planta/fisiología , Clorofila , Agua
2.
Genes (Basel) ; 14(5)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239432

RESUMEN

Drought stress affects plant growth and development through several mechanisms, including the induction of oxidative stress. To cope with drought, plants have drought tolerance mechanisms at the physiological, biochemical, and molecular levels. In this study, the effects of foliar application of distilled water and methyl jasmonate (MeJA) (5 and 50 µM) on the physiological, biochemical, and molecular responses of Impatiens walleriana during two drought regimes (15 and 5% soil water content, SWC) were investigated. The results showed that plant response depended on the concentration of the elicitor and the stress intensity. The highest chlorophyll and carotenoid contents were observed at 5% SWC in plants pre-treated with 50 µM MeJA, while the MeJA did not have a significant effect on the chlorophyll a/b ratio in drought-stressed plants. Drought-induced formation of hydrogen peroxide and malondialdehyde in plants sprayed with distilled water was significantly reduced in plant leaves pretreated with MeJA. The lower total polyphenol content and antioxidant activity of secondary metabolites in MeJA-pretreated plants were observed. The foliar application of MeJA affected the proline content and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase) in plants that suffered from drought. The expression of abscisic acid (ABA) metabolic genes (IwNCED4, IwAAO2, and IwABA8ox3) was the most affected in plants sprayed with 50 µM MeJA, while of the four analyzed aquaporin genes (IwPIP1;4, IwPIP2;2, IwPIP2;7, and IwTIP4;1), the expression of IwPIP1;4 and IwPIP2;7 was strongly induced in drought-stressed plants pre-treated with 50 µM MeJA. The study's findings demonstrated the significance of MeJA in regulating the gene expression of the ABA metabolic pathway and aquaporins, as well as the considerable alterations in oxidative stress responses of drought-stressed I. walleriana foliar sprayed with MeJA. The results improved our understanding of this horticulture plant's stress physiology and the field of plant hormones' interaction network in general.


Asunto(s)
Impatiens , Impatiens/metabolismo , Sequías , Clorofila A , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Plantas/metabolismo , Agua/metabolismo
3.
Plants (Basel) ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34834671

RESUMEN

Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.

4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203436

RESUMEN

The beneficial role of fungi from the Trichoderma genus and its secondary metabolites in promoting plant growth, uptake and use efficiency of macronutrients and oligo/micro-nutrients, activation of plant secondary metabolism and plant protection from diseases makes it interesting for application in environmentally friendly agriculture. However, the literature data on the effect of Trichoderma inoculation on tomato fruit quality is scarce. Commercially used tomato cultivars were chosen in combination with indigenous Trichodrema species previously characterized on molecular and biochemical level, to investigate the effect of Trichoderma on photosynthetic characteristics and fruit quality of plants grown in organic system of production. Examined cultivars differed in the majority of examined parameters. Response of cultivar Gruzanski zlatni to Trichoderma application was more significant. As a consequence of increased epidermal flavonols and decreased chlorophyll, the nitrogen balance index in leaves has decreased, indicating a shift from primary to secondary metabolism. The quality of its fruit was altered in the sense of increased total flavonoids content, decreased starch, increased Bioaccumulation Index (BI) for Fe and Cr, and decreased BI for heavy metals Ni and Pb. Higher expression of swolenin gene in tomato roots of more responsive tomato cultivar indicates better root colonization, which correlates with observed positive effects of Trichodrema.


Asunto(s)
Trichoderma/patogenicidad , Flavonoides/metabolismo , Frutas/microbiología , Hypocreales/patogenicidad , Fotosíntesis/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología
5.
Plant Physiol Biochem ; 161: 176-190, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33618201

RESUMEN

The UV-B represents the minor fraction of the solar spectrum, while UV-C is not contained in natural solar radiation, but both radiation types can cause damaging effects in plants. Cell walls (CWs) are one of the targets for external stressors. Juvenile P. omorika trees were treated either with 21 day-high doses UV-B or with 7 day- UV-C in open-top chambers. Using spectroscopic and biochemical techniques, it was shown that the response to UV radiation includes numerous modifications in needle CW structure: relative content of xylan, xyloglucan, lignin and cellulose decreased; cellulose crystallinity changed; yield of lignin monomers with stronger connection of CC in side chain with the ring increased; re-distribution of inter- and intra-polymer H-bonds occurred. The recovery was mediated by an increase in the activities and changes in isoform profiles of CW bound covalent peroxidases (POD) and polyphenol oxidases (PO) (UV-B), and ionic POD and covalent PO (UV-C). A connection between activities of specific POD/PO isoforms and phenolic species (m- and p-coumaric acid, pinoresinol and cinnamic acid derivatives) was demonstrated, and supported by changes in the sRNA profile. In vivo fluorometry showed phenolics accumulation in needle epidermal CWs. These results imply transversal connections between polymers and changed mechanical properties of needle CW as a response to UV. The CW alterations enabled maintenance of physiological functions, as indicated by the preserved chlorophyll content and/or organization. The current study provides evidence that in conifers, needle CW response to both UV-B and UV-C includes biochemical modifications and structural remodeling.


Asunto(s)
Picea , Pared Celular , Celulosa , Lignina , Rayos Ultravioleta
6.
Plants (Basel) ; 10(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466920

RESUMEN

Aquaporins comprise a large group of transmembrane proteins responsible for water transport, which is crucial for plant survival under stress conditions. Despite the vital role of aquaporins, nothing is known about this protein family in Impatiens walleriana, a commercially important horticultural plant, which is sensitive to drought stress. In the present study, attention is given to the molecular characterization of aquaporins in I. walleriana and their expression during drought stress and recovery. We identified four I. walleriana aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1. All of them had conserved NPA motifs (Asparagine-Proline-Alanine), transmembrane helices (TMh), pore characteristics, stereochemical properties and tetrameric structure of holoprotein. Drought stress and recovery treatment affected the aquaporins expression in I. walleriana leaves, which was up- or downregulated depending on stress intensity. Expression of IwPIP2;7 was the most affected of all analyzed I. walleriana aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, IwPIP2;7 expression significantly decreased and increased, respectively. Aquaporins IwPIP1;4 and IwTIP4;1 had lower expression in comparison to IwPIP2;7, with moderate expression changes in response to drought and recovery, while IwPIP2;2 expression was of significance only in recovered plants. Insight into the molecular structure of I. walleriana aquaporins expanded knowledge about plant aquaporins, while its expression during drought and recovery contributed to I. walleriana drought tolerance mechanisms and re-acclimation.

7.
Plants (Basel) ; 9(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202704

RESUMEN

This study was carried out to examine the drought effect on development, physiological, biochemical and molecular parameters in Impatiens walleriana grown ex vitro. Experiment design included three treatments: Control plants-grown under optimal watering (35%-37% of soil moisture content), drought-stressed plants-non-irrigated to reach 15% and 5% of soil moisture content and recovery plants-rehydrated for four days to reach optimal soil moisture content. Drought reduced fresh weight, total leaf area, as well as dry weight of I. walleriana shoots. Drought up-regulated expression of abscisic acid (ABA) biosynthesis genes 9-cis-epoxycarotenoid dioxygenase 4 (NCED4) and abscisic aldehyde oxidase 2 (AAO2) and catabolic gene ABA 8'-hydroxylase 3 (ABA8ox3) which was followed by increased ABA content in the leaves. Decrement in water potential of shoots during the drought was not accompanied with increased amino acid proline content. We detected an increase in chlorophyll, carotenoid, total polyphenols and flavonols content under drought conditions, as well as malondialdehyde, hydrogen peroxide and DPPH (1,1'-diphenyl-2-picrylhydrazyl) activity. Increased antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase) throughout drought were also determined. Recovery treatment was significant for neutralizing drought effect on growth parameters, shoot water potential, proline content and genes expression.

8.
Plants (Basel) ; 9(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899651

RESUMEN

Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes.

9.
J Plant Physiol ; 206: 25-39, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27688091

RESUMEN

In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100µmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.


Asunto(s)
Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Paraquat/toxicidad , Pelargonium/efectos de los fármacos , Pelargonium/metabolismo , Hojas de la Planta/metabolismo , Haz Vascular de Plantas/metabolismo , Luz Solar , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Espacio Extracelular/metabolismo , Glutatión/metabolismo , Pelargonium/efectos de la radiación , Peroxidasas/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Haz Vascular de Plantas/efectos de los fármacos , Haz Vascular de Plantas/efectos de la radiación
11.
Environ Sci Pollut Res Int ; 23(10): 10005-20, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26865485

RESUMEN

Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10-20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.


Asunto(s)
Cobre/farmacología , Contaminantes del Suelo/farmacología , Verbascum/efectos de los fármacos , Zinc/farmacología , Cobre/análisis , Cobre/metabolismo , Contaminación Ambiental , Minería , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Contaminantes del Suelo/análisis , Verbascum/crecimiento & desarrollo , Verbascum/metabolismo , Zinc/análisis , Zinc/metabolismo
12.
J Exp Bot ; 57(3): 675-83, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16396996

RESUMEN

The direct effects of pH changes and/or abscisic acid (ABA) on stomatal aperture were examined in epidermal strips of Commelina communis L. and Arabidopsis thaliana. Stomata were initially opened at pH 7 or pH 5. The stomatal closure induced by changes in external pH and/or ABA (10 microM or 10 nM) was monitored using video microscopy and quantified in terms of changes in stomatal area using image analysis software. Measurements of aperture area enabled stomatal responses and, in particular, small changes in stomatal area to be quantified reliably. Both plant species exhibited a biphasic closure response to ABA: an initial phase of rapid stomatal closure, followed by a second, more prolonged, phase during which stomata closure proceeded at a slower rate. Changes in stomatal sensitivity to ABA were also observed. Comparison of these effects between C. communis and A. thaliana demonstrate that this differential sensitivity of stomata to ABA is species-dependent, as well as being dependent on the pH of the extracellular environment.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Commelina/efectos de los fármacos , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Commelina/anatomía & histología , Commelina/fisiología , Concentración de Iones de Hidrógeno , Cinética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Especificidad de la Especie
13.
Ann N Y Acad Sci ; 1048: 513-6, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16154989

RESUMEN

An analysis of the rate of stomatal closure in epidermal strips of Commelina communis L. induced by different calcium concentrations (10 nM to 1 mM) demonstrated a biphasic dependency, the initial process of closure being more calcium dependent. This dependency was more evident at pH 7 than pH 5 of the bathing medium. Addition of low concentrations of abscisic acid (10 nM) induced a broadening of the Ca(2) dependency, while 10 microM abscisic acid increased the rate of stomatal closure in the whole Ca(2+) range and to a large extent abolished the calcium-induced effects. Such results indicate an interaction of external protons, Ca(2+), and abscisic acid, and possible competition for the membrane associated binding sites of the mechanism(s) responsible for the regulation of stomatal closure.


Asunto(s)
Ácido Abscísico/farmacología , Calcio/farmacología , Commelina/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Cationes Bivalentes , Commelina/fisiología , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Cinética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...